【题目】已知抛物线
:
的焦点为
,点
为其上一点,且
.
(1)求
与
的值;
(2)如图,过点
作直线
交抛物线于
、
两点,求直线
、
的斜率之积.
![]()
参考答案:
【答案】(1)p=4,
;(2)直线
、
的斜率之积为
.
【解析】试题分析:(1)利用
和点在抛物线上即可求解;
(2)讨论斜率不存在和斜率存在时两种情况,斜率不存在直接检验即可;当直线
的斜率存在,设为
,则其方程可表示为:
,与抛物线联立,
,
,利用韦达定理求解即可.
试题解析:
(1)抛物线
:
的焦点为
,准线为
。
由抛物线定义知:点
到
的距离等于
到准线的距离,故
,
,抛物线
的方程为![]()
点
在抛物线
上,
![]()
,
(2)由(1)知:抛物线
的方程为
,焦点为![]()
若直线
的斜率不存在,则其方程为:
,代入
,易得:
,
,从而
;
若直线
的斜率存在,设为
,则其方程可表示为:
,
由
,消去
,得:
即
, ![]()
设
,
,则![]()
从而![]()
综上所述:直线
、
的斜率之积为
。
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣9≤0,x∈R,m∈R}.
(1)若A∩B=[1,3],求实数m的值;
(2)若p是q的充分条件,求实数m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数f(x)为增函数,且f(f(x))=4x+9,g(x)=mx+m+3(m∈R).
(1)当x∈[-1,2]时,若不等式g(x)>0恒成立,求m的取值范围;
(2)如果函数F(x)=f(x)g(x)为偶函数,求m的值;
(3)当函数f(x)和g(x)满足f(g(x))=g(f(x))时,求函数
的值域. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=
(t+1)lnx,,其中t∈R.(1)若t=1,求证:当x>1时,f(x)>0成立;
(2)若t>
,判断函数g(x)=x[f(x)+t+1]的零点的个数. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为
,边界忽略不计)即为中奖·乙商场:从装有2个白球、2个蓝球和2个红球的盒子中一次性摸出1球(这些球除颜色外完全相同),它是红球的概率是
,若从盒子中一次性摸出2球,且摸到的是2个相同颜色的球,即为中奖.
(Ⅰ)求实数
的值;(Ⅱ)试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】选修
:不等式选讲已知函数f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】选修
:坐标系与参数方程已知曲线C的极坐标方程为ρ﹣4cosθ+3ρsin2θ=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l过点M(1,0),倾斜角为
.(Ⅰ)求曲线C的直角坐标方程与直线l的参数方程;
(Ⅱ)若曲线C经过伸缩变换
后得到曲线C′,且直线l与曲线C′交于A,B两点,求|MA|+|MB|.
相关试题