【题目】选修
:坐标系与参数方程
已知曲线C的极坐标方程为ρ﹣4cosθ+3ρsin2θ=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l过点M(1,0),倾斜角为
.
(Ⅰ)求曲线C的直角坐标方程与直线l的参数方程;
(Ⅱ)若曲线C经过伸缩变换
后得到曲线C′,且直线l与曲线C′交于A,B两点,求|MA|+|MB|.
参考答案:
【答案】(1)(x﹣2)2+4y2=4,
,(t为参数);(2)
.
【解析】试题分析:
(Ⅰ)极坐标方程化简直角坐标方程可得曲线C的直角坐标方程为(x﹣2)2+4y2=4,利用点的坐标和倾斜角可得直线的参数方程为
,(t为参数);
(Ⅱ)利用题意求得伸缩变换之后的方程,然后利用弦长公式可得弦长为
.
试题解析:
(Ⅰ)∵曲线C的极坐标方程为ρ﹣4cosθ+3ρsin2θ=0,∴ρ2﹣4ρcosθ+3ρ2sin2θ=0,
∴曲线C的直角坐标方程为x2+y2﹣4x+3y2=0,整理,得(x﹣2)2+4y2=4,
∵直线l过点M(1,0),倾斜角为
,
∴直线l的参数方程为
,即
,(t是参数).
(Ⅱ)∵曲线C经过伸缩变换
后得到曲线C′,
∴曲线C′为:(x﹣2)2+y2=4,
把直线l的参数方程
,(t是参数)代入曲线C′:(x﹣2)2+y2=4,
得:
,
设A,B对应的参数分别为t1,t2,则t1+t2=
,t1t2=﹣3,
|MA|+|MB|=|t1|+|t2|=|t1﹣t2|=
=
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线
:
的焦点为
,点
为其上一点,且
.(1)求
与
的值;(2)如图,过点
作直线
交抛物线于
、
两点,求直线
、
的斜率之积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为
,边界忽略不计)即为中奖·乙商场:从装有2个白球、2个蓝球和2个红球的盒子中一次性摸出1球(这些球除颜色外完全相同),它是红球的概率是
,若从盒子中一次性摸出2球,且摸到的是2个相同颜色的球,即为中奖.
(Ⅰ)求实数
的值;(Ⅱ)试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】选修
:不等式选讲已知函数f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。

(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设
(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
的右焦点
,椭圆
的左,右顶点分别为
.过点
的直线
与椭圆交于
两点,且
的面积是
的面积的3倍. (Ⅰ)求椭圆
的方程;(Ⅱ)若
与
轴垂直,
是椭圆
上位于直线
两侧的动点,且满足
,试问直线
的斜率是否为定值,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(Ⅰ)讨论函数
的单调性;(Ⅱ)记函数
的两个零点分别为
,且
.已知
,若不等式
恒成立,求
的取值范围.
相关试题