【题目】已知函数:f(x)=x2+bx+c,其中:0≤b≤4,0≤c≤4,记函数f(x)满足条件:
的事件为A,则事件A发生的概率为( )
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】A
【解析】解:∵f(x)=x2+bx+c,
∴不等式
,即
,化简得
以b为横坐标、a为纵坐标建立直角坐标系,
将不等式组
和
对应的平面区域作出,如图所示
不等式组
对应图中的正方形ODEF,其中
D(0.4),E(4,4),F(4,0),O为坐标原点,可得S正方形ODEF=4×4=16
不等式组
对应图中的四边形OHGF,
可得S四边形OHGF=S正方形ODEF﹣S△DHG﹣S△EFG=16﹣2﹣4=10
∵事件A=
,
∴事件A发生的概率为P(A)=
=
=
故选:A![]()
【考点精析】利用几何概型对题目进行判断即可得到答案,需要熟知几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(1)讨论函数
的单调性;(2)当
时,若函数
的导函数
的图象与
轴交于
,
两点,其横坐标分别为
,
,线段
的中点的横坐标为
,且
,
恰为函数
的零点,求证:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的非负半轴为极轴建立极坐标系,圆
的极坐标方程为
,直线
与圆
交于
,
两点.(1)求圆
的直角坐标方程及弦
的长;(2)动点
在圆
上(不与
,
重合),试求
的面积的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的不等式ax2﹣(a+2)x+2<0.
(1)当a=﹣1时,解不等式;
(2)当a∈R时,解不等式. -
科目: 来源: 题型:
查看答案和解析>>【题目】若直线ax﹣by+2=0(a>0,b>0)被圆x2+y2+4x﹣4y﹣1=0所截得的弦长为6,则
的最小值为( )
A.10
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知{an}是等差数列,其前n项和为Sn , {bn}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=anb1+an﹣1b2+…+a1bn , n∈N* , 是否存在实数p,q,r,对于任意n∈N* , 都有Tn=pan+qbn+r,若存在求出p,q,r的值,若不存在说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图给出的是计算
的值的一个程序框图,判断框内应填入的条件是( ) 
A.i<20
B.i>20
C.i<10
D.i>10
相关试题