【题目】在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,且AB=3,BD=4,则三棱锥A﹣BCD外接球的半径为( )![]()
A.2
B.3
C.4
D.![]()
参考答案:
【答案】D
【解析】解:取AD的中点O,连结OB、OC
∵AB⊥平面BCD,CD平面BCD,∴AB⊥CD,
又∵BC⊥CD,AB∩BC=B,∴CD⊥平面ABC,
∵AC平面ABC,∴CD⊥AC,
∵OC是Rt△ADC的斜边上的中线,OC=
AD.
同理可得:Rt△ABD中,OB=
AD,
∴OA=OB=OC=OD=
AD,可得A、B、C、D四点在以O为球心的球面上.
Rt△ABD中,AB=3且BD=4,可得AD=
=5,
由此可得球O的半径R=
AD=
, 即三棱锥A﹣BCD外接球的半径为
.
故选:D![]()
【考点精析】解答此题的关键在于理解球内接多面体的相关知识,掌握球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(1)若任意
,不等式
恒成立,求实数
的取值范围;(2)求证:对任意
,
,都有
成立;(3)对于给定的正数
,有一个最大的正数
,使得整个区间
上,不等式
恒成立,求出
的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(1)若
,求函数
的极值;(2)若函数
有两个零点,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】设
.(1)求
的单调区间;(2)已知
,若对所有
,都有
成立,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】2015 年 12 月,华中地区数城市空气污染指数“爆表”,此轮污染为 2015 年以来最严重的污染过程,为了探究车流量与
的浓度是否相关,现采集到华中某城市 2015 年 12 月份某星期星期一到星期日某一时间段车流量与
的数据如表:时间
星期一
星期二
星期三
星期四
星期五
星期六
星期日
车流量
(万辆)1
2
3
4
5
6
7
的浓度
(微克/立方米)28
30
35
41
49
56
62
(1)由散点图知
与
具有线性相关关系,求
关于
的线性回归方程;(提示数据:
)(2)利用(1)所求的回归方程,预测该市车流量为 12 万辆时
的浓度.参考公式:回归直线的方程是
,其中
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图 1,在直角梯形
中,
,且
.现以
为一边向形外作正方形
,然后沿边
将正方形
翻折,使
平面与平面
垂直,
为
的中点,如图 2.(1)求证:
平面
;(2)求证:
平面
;(3)求点
到平面
的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值
,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出
的值为 ( )(参考数据:
)
A.
B.
C.
D. 
相关试题