【题目】已知0<a<1,f(x)=ax , g(x)=logax,h(x)=
,当x>1时,则有( )
A.f(x)<g(x)<h(x)
B.g(x)<f(x)<h(x)
C.g(x)<h(x)<f(x)
D.h(x)<g(x)<f(x)
参考答案:
【答案】B
【解析】解:∵0<a<1,∴f(x)=ax在R上单调递减,
∴当x>1时,f(x)<f(1)=a<1,
结合指数函数的值域可得f(x)∈(0,1);
同理∵0<a<1,∴g(x)=logax在(0,+∞)上单调递减,
∴当x>1时,g(x)<g(1)=0,
结合对数函数的值域可得g(x)∈(﹣∞,0);
又∴h(x)=
在[0,+∞)上单调递增,
∴当x>1时,g(x)>h(1)=1,
故g(x)<f(x)<h(x),
故选:B.
【考点精析】通过灵活运用指数函数的图像与性质,掌握a0=1, 即x=0时,y=1,图象都经过(0,1)点;ax=a,即x=1时,y等于底数a;在0<a<1时:x<0时,ax>1,x>0时,0<ax<1;在a>1时:x<0时,0<ax<1,x>0时,ax>1即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:
(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,
.(1)求函数
的单调区间;(2)若关于
的方程
有实数根,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=|log0.5x|,若正实数m,n(m<n)满足f(m)=f(n),且f(x)在区间[m2 , n]上的最大值为4,则n﹣m=( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直三棱柱ABC﹣A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=
,M是CC1的中点,则异面直线AB1与A1M所成角为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在
市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)经常使用
偶尔或不用
合计
30岁及以下
70
30
100
30岁以上
60
40
100
合计
130
70
200
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为
市使用共享单车情况与年龄有关?(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式:
,其中
.参考数据:

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635
相关试题