【题目】现安排甲乙丙丁戊5名学生分别担任语文、数学、英语、物理、化学学科的科代表,要求甲不当语文科代表,乙不当数学科代表,若丙当物理科代表则丁必须当化学科代表,则不同的选法共有多少种( )
A. 53 B. 67 C. 85 D. 91
参考答案:
【答案】B
【解析】丙当物理课代表则丁必须当化学课代表,以丙进行分类 第一类,当丙当物理课代表时,丁必须当化学课代表,再根据甲当数学课代表,乙戊可以当英语和语文中的任一课,有
种,当甲不当数学课代表,甲只能当英语课代表,乙只能当语文课代表,戊当数学课代表,有
种,共计
种, 第二类,当丙不当物理课代表时,分四类①丙为语文课代表时,乙只能从英语、物理和U学中选择一课,剩下的甲丁戊任意排给剩下的三
课,有种
,②丙为数学课代表时,甲只能从英语、物理和化学课,剩下的乙丁戊任意排给剩下的三课,有
种,③丙为英语课代表时,继续分类,甲当数学课代表时,其他三位同学任意当有
种,当甲不当数学课代表,甲只能从物理和化学课中选一课,乙只能从语文和甲选完后的剰下的一课中选一课,丁和戊做剰下的两课,有
,共计
种④丙为化学课代表时,同③的选法一样有
种,根据分类计数原理得,不同的选法共有
故选
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(I)求函数
的单调区间;(II)若
在
上恒成立,求实数
的取值范围;(III)在(II)的条件下,对任意的
,求证:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知某智能手机制作完成之后还需要依次通过三道严格的审核程序,第一道审核、第二道审核、第三道审核通过的概率分别为
,
,
,每道程序是相互独立的,且一旦审核不通过就停止审核,每部手机只有三道程序都通过才能出厂销售.(1)求审核过程中只通过两道程序的概率;
(2)现有3部该智能手机进入审核,记这3部手机可以出厂销售的部数为
,求
的分布列及数学期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验,甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在
区间内(满分100分),并绘制频率分布直方图如图所示,两个班人数均为60人,成绩80分及以上为优良.

(1)根据以上信息填好
联表,并判断出有多大的把握认为学生成绩优良与班级有关?(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.
(以下临界值及公式仅供参考)
















,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作样本,如图是样本的茎叶图.规定:成绩不低于120分时为优秀成绩.
(1)从甲班的样本中有放回的随机抽取 2 个数据,求其中只有一个优秀成绩的概率;
(2)从甲、乙两个班级的样本中分别抽取2名同学的成绩,记获优秀成绩的人数为
,求
的分布列和数学期望
. -
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,以
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.(1)写出
的普通方程和
的直角坐标方程;(2)设点
在
上,点
在
上,求
的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数
,其中
是自然对数的底数.(1)若
在
上为单调函数,求实数
的取值范围;(2)若
,求证:
有唯一零点的充要条件是
.
相关试题