【题目】关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.
(1)求m的取值范围;
(2)写出一个满足条件的m的值,并求此时方程的根.
参考答案:
【答案】
(1)
∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,
∴△=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,
解得:m>﹣
.
(2)
解:m=1,此时原方程为x2+3x=0,
即x(x+3)=0,
解得:x1=0,x2=﹣3.
【解析】(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.
【考点精析】本题主要考查了因式分解法和求根公式的相关知识点,需要掌握已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势;根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,椭圆
:
的离心率为
,直线
被椭圆
截得的线段长为
.(Ⅰ)求椭圆
的方程;(Ⅱ)过原点的直线与椭圆
交于
,
两点(
,
不是椭圆
的顶点),点
在椭圆
上,且
.直线
与
轴、
轴分别交于
,
两点.设直线
,
的斜率分别为
,
,证明存在常数
使得
,并求出
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】身穿红、黄两种颜色衣服的各有两人,身穿蓝颜色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有( )
A. 24种 B. 28种 C. 36种 D. 48种
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(1)若
,求函数
的最小值;(2)当
时,若对
,
,使得
成立,求
的范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】按照国家环保部发布的新修订的《环境空气质量标准》,规定:PM2.5的年平均浓度不得超过35微克/立方米,国家环保部门在2016年10月1日到2017年1月30日这120天对全国的PM2.5平均浓度的监测数据统计如下:
组别
PM2.5浓度(微克/立方米)
频数(天)
第一组

32
第二组

64
第三组

16
第四组
115以上
8
(1)在这120天中抽取30天的数据做进一步分析,每一组应抽取多少天?
(2)在(1)中所抽取的样本PM2.5的平均浓度超过75(微克/立方米)的若干天中,随机抽取2天,求恰好有一天平均浓度超过115(微克/立方米)的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,4).

(1)求直线l1的表达式;
(2)过动点P(n,0)且垂于x轴的直线与l1 , l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】某养殖场需定期购买饲料,已知该场每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元.
(1)求该场多少天购买一次饲料才能使平均每天支付的总费用最少;
(2)若提供饲料的公司规定,当一次购买饲料不少于5吨时,其价格可享受八五折优惠(即原价为85%).问:该场是否应考虑利用此优惠条件?请说明理由.
相关试题