【题目】如图所示,在正方体
中,侧面对角线
,
上分别有一点E,F,且
,则直线EF与平面ABCD所成的角的大小为( )
![]()
A.0°B.60°C.45°D.30°
参考答案:
【答案】A
【解析】
证明一条直线与一个平面平行,除了可以根据直线与平面平行的判定定理以外,通常还可以通过平面与平面平行进行转化,比如过E作EG∥AB交BB1于点G,连接GF,根据三角形相似比可知:平面EFG∥平面ABCD.而EF在平面EFG中,故可以证得:EF∥平面ABCD.
解:过E作EG∥AB交BB1于点G,连接GF,则
,
∵B1E=C1F,B1A=C1B,∴
.
∴FG∥B1C1∥BC.
又∵EG∩FG=G,AB∩BC=B,
∴平面EFG∥平面ABCD.而EF在平面EFG中,
∴EF∥平面ABCD.
故答案为:A
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】O为坐标原点,直线l与圆x2+y2=2相切.
(1)若直线l分别与x、y轴正半轴交于A、B两点,求△AOB面积的最小值及面积取得最小值时的直线l的方程.
(2)设直线l交椭圆
=1于P、Q两点,M为PQ的中点,求|OM|的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】我国古代数学家刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正
边形逼近圆,算得圆周率的近似值记为
,那么用圆的内接正
边形逼近圆,算得圆周率的近似值加
可表示成( )A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】几个孩子在一棵枯树上玩耍,他们均不慎失足下落.已知
(
)甲在下落的过程中依次撞击到树枝
,
,
;(
)乙在下落的过程中依次撞击到树枝
,
,
;(
)丙在下落的过程中依次撞击到树枝
,
,
;(
)丁在下落的过程中依次撞击到树枝
,
,
;(
)戊在下落的过程中依次撞击到树枝
,
,
.倒霉和李华在下落的过程中撞到了从
到
的所有树枝,根据以上信息,在李华下落的过程中,和这
根树枝不同的撞击次序有( )种.A.
B.
C.
D. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
是正三角形,EA,CD都垂直于平面ABC,且
,
,F是BE的中点,
求证:(1)
平面ABC;(2)
平面EDB.(3)求几何体
的体积. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,
的图象经过
和
两点,如图所示,且函数
的值域为
.过该函数图象上的动点
作
轴的垂线,垂足为
,连接
.
(I)求函数
的解析式;(Ⅱ)记
的面积为
,求
的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=lnx+1.
(Ⅰ)证明:当x>0时,f(x)≤x;
(Ⅱ)设
,若g(x)≥0对x>0恒成立,求实数a的取值范围.
相关试题