【题目】已知函数f(x)=lnx+1.
(Ⅰ)证明:当x>0时,f(x)≤x;
(Ⅱ)设
,若g(x)≥0对x>0恒成立,求实数a的取值范围.
参考答案:
【答案】解:(Ⅰ)证明:构造函数m(x)=f(x)﹣x=lnx+1﹣x,
得x=1;
当x∈(0,1)时,m'(x)>0;当x∈(1,+∞)时,m'(x)<0;
∴[m(x)]max=m(1)=0;
∴m(x)≤0;
∴f(x)≤x;
(Ⅱ)若g(x)≥0对x>0恒成立等价于
对x>0恒成立;
记
,问题等价于a≥G(x)max;
由(Ⅰ)知lnx+1≤x(当且仅当x=1时取得等号);
∴
(当且仅当x=1时取得等号);
故G(x)max=1,所以a≥1;
∴实数a的取值范围为[1,+∞)
【解析】(Ⅰ)先构造函数m(x)=lnx+1﹣x,然后求导,根据导数符号即可求出函数m(x)的最大值为0,即得到m(x)≤0,从而证得f(x)≤x;(Ⅱ)根据x>0,
便可解得
,而根据上面知lnx+1≤x恒成立,从而便可求得
的最大值,进而即可得出实数a的取值范围.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的最大(小)值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减;求函数
在
上的最大值与最小值的步骤:(1)求函数
在
内的极值;(2)将函数
的各极值与端点处的函数值
,
比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在正方体
中,侧面对角线
,
上分别有一点E,F,且
,则直线EF与平面ABCD所成的角的大小为( )
A.0°B.60°C.45°D.30°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
是正三角形,EA,CD都垂直于平面ABC,且
,
,F是BE的中点,
求证:(1)
平面ABC;(2)
平面EDB.(3)求几何体
的体积. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,
的图象经过
和
两点,如图所示,且函数
的值域为
.过该函数图象上的动点
作
轴的垂线,垂足为
,连接
.
(I)求函数
的解析式;(Ⅱ)记
的面积为
,求
的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.

(1)求证:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切线PC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】某销售公司拟招聘一名产品推销员,有如下两种工资方案:
方案一:每月底薪2000元,每销售一件产品提成15元;
方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.
(1)分别写出两种方案中推销员的月工资
(单位:元)与月销售产品件数
的函数关系式;(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:
月销售产品件数

300
400
500
600
700
次数
2
4
9
5
4
把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是
,
,
,
,
.
(1)求图中
的值;(2)根据频率分布直方图,估计这200名学生的平均分;
(3)若这200名学生的数学成绩中,某些分数段的人数
与英语成绩相应分数段的人数
之比如下表所示,求英语成绩在
的人数.分数段






1:2
2:1
6:5
1:2
1:1
相关试题