【题目】某家庭进行理财投资,根据长期收益率市场预测,投资
类产品的收益与投资额成正比,投资
类产品的收益与投资额的算术平方根成正比.已知投资1万元时
两类产品的收益分别为0.125万元和0.5万元.
(1)分别写出
两类产品的收益与投资额的函数关系;
(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
参考答案:
【答案】(1)f(x)=
x(x≥0),g(x)=![]()
(x≥0);(2)投资A类为16万元,投资B类为4万,最大3万元.
【解析】
试题分析:(1)由投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;
(2)由(1)的结论,我们设设投资债券类产品x万元,则股票类投资为20-x万元.这时可以构造出一个关于收益y的函数,然后利用求函数最大值的方法进行求解.
试题解析:(1)设
两类产品的收益与投资额的函数分别为f(x)=k1x,g(x)=k2
.
由已知得f(1)=
=k1,g(1)=
=k2,所以f(x)=
x(x≥0),g(x)=![]()
(x≥0).
(2)设投资
类产品为x万元,则投资
类产品为(20-x)万元.
依题意得y=f(x)+g(20-x)=
+![]()
(0≤x≤20).
令t=
(0≤t≤2
),则y=
+
t=-
(t-2)2+3,
所以当t=2,即x=16时,收益最大,ymax=3万元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设实数x、y满足2x+y=9.
(1)若|8﹣y|≤x+3,求x的取值范围;
(2)若x>0,y>0,求证:
≥
. -
科目: 来源: 题型:
查看答案和解析>>【题目】椭圆Γ:
=1(a>b>0)的左右焦点分别为F1 , F2 , 焦距为2c,若直线y=
与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1 , 则该椭圆的离心率等于 . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知
,
∈[1,+∞).(1)当
时,判断函数
的单调性并证明;(2)当
时,求函数
的最小值;(3)若对任意
∈[1,+∞),
>0恒成立,试求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程

关于时间
的函数关系式分别为
,
,
,
,有以下结论:①当
时,甲走在最前面;②当
时,乙走在最前面;③当
时,丁走在最前面,当
时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).
-
科目: 来源: 题型:
查看答案和解析>>【题目】在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1 , CD的中点,求证:平面ADE⊥平面A1FD1 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个袋子里装有7个球,其中有红球4个,编号分别为1,2,3,4;白球3个,编号分别为2,3,4.从袋子中任取4个球(假设取到任何一个球的可能性相同).
(Ⅰ)求取出的4个球中,含有编号为3的球的概率;
(Ⅱ)在取出的4个球中,红球编号的最大值设为X,求随机变量X的分布列和数学期望.
相关试题