【题目】某DVD光盘销售部每天的房租、人员工资等固定成本为300元,每张DVD光盘的进价是6元,销售单价与日均销售量的关系如表所示:
销售单价(元) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
日均销售量(张) | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
(1)请根据以上数据作出分析,写出日均销售量P(x)(张)关于销售单价x(元)的函数关系式,并写出其定义域;
(2)问这个销售部销售的DVD光盘销售单价定为多少时才能使日均销售利润最大?最大销售利润是多少?
参考答案:
【答案】(1) P(x)=-40x+760(0<x<19).
(2) 销售单价定为12.5元,就可使日均销售利润最大,最大为1 390元.
【解析】试题分析:(1)根据题意可得P(x)为销售单价x一次函数,注意求函数定义域(2)由销售量与销售单价的乘积减去成本得利润函数,为二次函数,根据二次函数对称轴与定义区间关系确定最大值
试题解析:解:(1)根据图表,销售单价每增加1元,日均销售量就减少40张,
∴P(x)=480-40(x-7)=-40x+760,
由x>0且-40x+760>0,得0<x<19,
∴P(x)关于x的函数关系式为
P(x)=-40x+760(0<x<19).
(2)设日均销售利润为y元,于是可得
y=(-40x+760)(x-6)-300
=-40x2+1 000x-4 860
=-40(x-
)2+1 390,
当x=12.5时,y有最大值,最大值为1 390元.
故只需将销售单价定为12.5元,就可使日均销售利润最大,最大为1 390元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】轮船由甲地逆水匀速行驶至乙地,甲、乙两地相距s(km),水流速度为p(km/h),轮船在静水中的最大速度为q(km/h)(p,q为常数,且q>p),已知轮船每小时的燃料费用与轮船在静水中的速度v(km/h)成正比,比例系数为常数k.
(1)将全程燃料费用y(元)表示为静水中速度v(km/h)的函数;
(2)若s=100,p=10,q=110,k=2,为了使全程的燃料费用最少,轮船的实际行驶速度应为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第x年与年产量f(x) 万件之间的关系如下表所示:
x
1
2
3
4
f(x)
4.00
5.58
7.00
8.44
若f(x)近似符合以下三种函数模型之一:f(x)=ax+b,f(x)=2x+a,f(x)=log
x+a.(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;
(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的二次函数f(x)=x2+(2t-1)x+1-2t.
(1)求证:对于任意t∈R,方程f(x)=1必有实数根;
(2)若
<t<
,求证:方程f(x)=0在区间(-1,0)及
内各有一个实数根. -
科目: 来源: 题型:
查看答案和解析>>【题目】设A是同时符合以下性质的函数f(x)组成的集合:
①x∈[0,+∞),都有f(x)∈(1,4];②f(x)在[0,+∞)上是减函数.
(1)判断函数f1(x)=2-
和f2(x)=1+3·
(x≥0)是否属于集合A,并简要说明理由;(2)把(1)中你认为是集合A中的一个函数记为g(x),若不等式g(x)+g(x+2)≤k对任意的x≥0总成立,求实数k的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线
,过点
的直线
交抛物线于
两点,坐标原点为
,且
12.(Ⅰ)求抛物线的方程;
(Ⅱ)当以
为直径的圆的面积为
时,求
的面积
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣9≤0,x∈R,m∈R}.
(1)若A∩B=[1,3],求实数m的值;
(2)若p是q的充分条件,求实数m的取值范围.
相关试题