【题目】已知方程x2y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)的图形是圆.

(1)求t的取值范围;

(2)求圆的面积取最大值时t的值;

(3)若点P(3,4t2)恒在所给圆内,求t的取值范围.


参考答案:

【答案】(1)-<t<1;(2)t;(3)0<t<

【解析】

(1)先化圆的标准方程,再根据半径大于零得不等式,解得t的取值范围;(2)根据半径最大时面积最大,转化为求半径最大值,再根据二次函数性质求最大值取法即得结果;(3)根据条件列不等式,解得结果.

(1)方程即(xt-3)2+(y+1-4t2)2=-7t2+6t+1,

r2=-7t2+6t+1>0,<t<1.

(2)r

∴当t(-时,rmax

故当t时,圆的面积最大.

(3)当且仅当32+(4t2)2-2(t+3)×3+2(1-4t2)×4t2+16t4+9<0时,点P在圆内,

8t2-6t<00<t<

关闭