【题目】已知圆
圆心坐标为点
为坐标原点,
轴、
轴被圆
截得的弦分别为
、
.
(1)证明:
的面积为定值;
(2)设直线
与圆
交于
两点,若
,求圆
的方程.
参考答案:
【答案】(1)证明见解析;(2)
.
【解析】
(1)利用几何条件可知,
为直角三角形,且圆过原点,所以得知三角形两直角边边长,求得面积;
(2)由
及原点O在圆上,知OC
MN,所以
,求出
的值,再利用直线与圆的位置关系判断检验,符合题意的解,最后写出圆
的方程。
(1)因为
轴、
轴被圆
截得的弦分别为
、
,
所以
经过
,又
为
中点,所以
,所以
,所以
的面积为定值.
(2)因为直线
与圆
交于
两点,
,
所以
的中垂线经过
,且过
,所以
的方程
,
所以
,所以当
时,有圆心
,半径
,
所以圆心
到直线
的距离为
,
所以直线
与圆
交于点
两点,故成立;
当
时,有圆心
,半径
,所以圆心
到直线
的距离为
,所以直线
与圆
不相交,故
(舍去),
综上所述,圆
的方程为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设数列{an}的前n项和为
.
(1)求数列{an}的通项公式an;
(2)是否存在正整数n,使得
?若存在,求出n值;若不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),在以原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.(1)求曲线
的普通方程和直线
的倾斜角;(2)设点
,直线
和曲线
交于
两点,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥
中,
平面
,
,
,
,点Q在棱AB上.(1)证明:
平面
.(2)若三棱锥
的体积为
,求点B到平面PDQ的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
平面
,
为矩形,
分别为
的中点,
.
(1)求证:
平面
;(2)求证:面
平面
;(3)求点
到平面
的距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知A(x0 , 0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足
.
(1)求出动点P的轨迹对应曲线C的标准方程;
(2)一条纵截距为2的直线l1与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程;
(3)直线l2:x=ty+1与曲线C交于A、B两点,E(1,0),试问:当t变化时,是否存在一直线l2 , 使△ABE的面积为
?若存在,求出直线l2的方程;若不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=alnx+x2+bx(a为实常数).
(1)若a=﹣2,b=﹣3,求f(x)的单调区间;
(2)若b=0,且a>﹣2e2 , 求函数f(x)在[1,e]上的最小值及相应的x值;
(3)设b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.
相关试题