【题目】已知:关于x的方程2x2+kx﹣1=0.
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是﹣1,求另一个根及k值.
参考答案:
【答案】
(1)证明:∵a=2,b=k,c=﹣1
∴△=k2﹣4×2×(﹣1)=k2+8,
∵无论k取何值,k2≥0,
∴k2+8>0,即△>0,
∴方程2x2+kx﹣1=0有两个不相等的实数根.
(2)解:把x=﹣1代入原方程得,2﹣k﹣1=0
∴k=1
∴原方程化为2x2+x﹣1=0,
解得:x1=﹣1,x2=
,即另一个根为
.
【解析】(1)方程有两个不相等的实数根,则应有△=b2-4ac>0,由此计算方程根的判别式即可证明方程根的情况;(2)把x=﹣1代入原方程,求得k的值,再解方程求得另一个根.
【考点精析】根据题目的已知条件,利用根与系数的关系的相关知识可以得到问题的答案,需要掌握一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.

(1)已知BD=
,求正方形ABCD的边长;
(2)猜想线段EM与CN的数量关系并加以证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:
,OB、OC、OM、ON是
内的射线.
如图1,若OM平分
,ON平分
当OB绕点O在
内旋转时,则
的大小为______;
如图2,若
,OM平分
,ON平分
当
绕点O在
内旋转时,求
的大小;
在
的条件下,若
,当
在
内绕着点O以
秒的速度逆时针旋转t秒时,
和
中的一个角的度数恰好是另一个角的度数的两倍,求t的值
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.
(1)A比B后出发几个小时?B的速度是多少?
(2)在B出发后几小时,两人相遇?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OC是∠AOB的平分线,OD是∠AOC的平分线,OE是∠BOD的平分线,且∠BOE=30°,求∠AOB的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.

(1)求证:BD是⊙O的切线;
(2)求证:CE2=EHEA;
(3)若⊙O的半径为5,sinA=
,求BH的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程kx2+(2k+1)x+2=0.
(1)求证:无论k取任何实数时,方程总有实数根;
(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2 , 请结合函数图象确定实数a的取值范围;
(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.
相关试题