【题目】如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是__.
![]()
参考答案:
【答案】4.8
【解析】
首先连接OP,由矩形的两条边AB、BC的长分别为6和8,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=
OAPE+
ODPF求得答案.
解:连接OP,
∵矩形的两条边AB、BC的长分别为6和8,
∴S矩形ABCD=ABBC=48,OA=OC,OB=OD,AC=BD=
,
∴OA=OD=5,
∴S△ACD=
S矩形ABCD=24,
∴S△AOD=
S△ACD=12,
∵S△AOD=S△AOP+S△DOP=
OAPE+
ODPF=
×5×PE+
×5×PF=
(PE+PF)=12,
解得:PE+PF=4.8.
故答案为:4.8.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】请写出图中的立体图形的名称.

①_______;②_______;③_______;④_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为( )

A.2
cmB.3
cmC.4
cmD.3cm -
科目: 来源: 题型:
查看答案和解析>>【题目】某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。(单位:km)

(1)求收工时距A地多远?
(2)在第______次纪录时距A地最远。
(3)若每千米耗油0.3升,问共耗油多少升?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=x2-2mx+m2-1.

(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD=

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从
A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.

(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________
(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,
①当P、Q两点运动停止时,求点P和点Q的距离;
②求当t为何值时P、Q两点恰好在途中相遇。
相关试题