【题目】如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.![]()
(1)证明:四边形ACDE是平行四边形;
(2)若AC=8,BD=6,求△ADE的周长.
参考答案:
【答案】
(1)证明:∵四边形ABCD是菱形,
∴AB∥CD,AC⊥BD,
∴AE∥CD,∠AOB=90°,
∵DE⊥BD,即∠EDB=90°,
∴∠AOB=∠EDB,
∴DE∥AC,
∴四边形ACDE是平行四边形
(2)解:∵四边形ABCD是菱形,AC=8,BD=6,
∴AO=4,DO=3,AD=CD=5,
∵四边形ACDE是平行四边形,
∴AE=CD=5,DE=AC=8,
∴△ADE的周长为AD+AE+DE=5+5+8=18
【解析】(1)菱形的对角线互相垂直,对边平行得出AB∥CD,AC⊥BD,再根据已知DE⊥BD,从而证得DE∥AC,即可得出结论。
(2)要求△ADE的周长,根据已知就需求AD的长,根据菱形的性质,对角线互相垂直平分,在Rt△AOD中运用勾股定理求出AD的长,即可求出△ADE的周长。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,长方形纸片ABCD的长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合.
求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】张老师抽取了九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,规定x≥6.25为合格,x≥9.25为优秀.并绘制出扇形统计图和频数分布直方图(不完整).

(1)抽取的这部分男生有人,请补全频数分布直方图;
(2)抽取的这部分男生成绩的中位数落在组?扇形统计图中D组对应的圆心角是多少度?
(3)如果九年级有男生400人,请你估计他们掷实心球的成绩达到合格的有多少人? -
科目: 来源: 题型:
查看答案和解析>>【题目】某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.
(1)求该店有客房多少间?房客多少人?
(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算? -
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.
(1)如图(a)所示,当点D在线段BC上时.
①求证:△AEB≌△ADC;
②探究四边形BCGE是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;
(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△A'B'C',点C的对应点是直线上的格点C'.
(1)画出△A'B'C';
(2)在BC上找一点P,使AP平分△ABC的面积;
(3)试在直线l上画出所有的格点Q,使得由点A'、B'、C'、Q四点围成的四边形的面积为9.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A,B,C三个班,他俩希望能再次成为同班同学.
(1)请你用画树状图法或列举法,列出所有可能的结果;
(2)求两人再次成为同班同学的概率.
相关试题