【题目】如图,已知△ABC是等边三角形,D、F分别为BC、AB边上的点,AF=BD,以AD为边作等边ΔADE.
(1)求证:AE=CF;
(2)求∠BEF的度数.
![]()
参考答案:
【答案】(1)见解析;(2) ∠BEF=60°
【解析】
(1)由ΔABC是等边三角形,可知AC=AB,∠CAB=∠ABC=60°,又由AF=BD,根据SAS定理得出△ACF≌ΔBAD,从而得出CF=AD.又由△ADE是等边三角形,AE=AD,进而得出AE=CF.
(2)由△ABC和△AED都是等边三角形,得出AB=AC,AE=AD,∠BAC=∠EAD=60°,进而得出∠BAE=∠CAD,由SAS定理判定ΔABE≌△ACD,得出BE=CD,∠ABE=∠ACD,又由AB=BC,AF=BD,得出BF=DC,进而得出BE=BF,又由∠EBF=∠ACD=60°,即可得出∠BEF=60°.
(1) 证明:∵ΔABC是等边三角形,
∴AC=AB,∠CAB=∠ABC=60°
又∵AF=BD
∴△ACF≌ΔBAD(SAS),
∴CF=AD.
∵△ADE是等边三角形,
∴AE=AD,
∴AE=CF.
(2)∵△ABC和△AED都是等边三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=60°,
∴∠BAE=∠CAD,
∴ΔABE≌△ACD(SAS),
∴BE=CD,∠ABE=∠ACD,
又∵AB=BC,AF=BD,
∴BF=DC,
∴BE=BF,
又∵∠EBF=∠ACD=60°,
∴△BEF为等边三角形.
∴∠BEF=60°
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场出售一批进价为2元的贺卡,在市场营销中发现商品的日销售单价x元与日销售量y个之间有如下关系:
x(元/个)
3
4
5
6
y(个)
20
15
12
10
(1)根据表中数据,在直角坐标系描出实数对(x,y)的对应点
(2)猜测并确定y与x之间的函数关系式,并画出图象;
(3)设经营此贺卡的销售利润为W元,试求出W与x之间的函数关系式,若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:在△ABC中,AB=AC=5,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.
(1)求四边形AQMP的周长;
(2)M位于BC的什么位置时,四边形AQMP为菱形?指出点M的位置,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的口袋中装有9个黄球,13个黑球,11个红球,它们除颜色外其余都相同.
(1)求从袋中摸出一个球是红球的概率;
(2)现从袋中取出若干个黄球,井放入相同数量的黑球,若要使搅拌均与后从袋中摸出一个球是黑球的概率不小于
,问至少要取出多少个黄球? -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).
请你回答:AP的最大值是 .
参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是 .(结果可以不化简)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司要将本公司100吨货物运往某地销售,经与运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨,已知租用1辆甲型汽车和2辆乙型汽车共需费用2600元;租用2辆甲型汽车和1辆乙型汽车共需费用2500元,且同一型号汽车每辆租车费用相同.
(1)求租用辆甲型汽车、一辆乙型汽车的费用分别是多少元?
(2)若这个公司计划此次租车费用不超过5200元,通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用,
相关试题