【题目】某公司要将本公司100吨货物运往某地销售,经与运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨,已知租用1辆甲型汽车和2辆乙型汽车共需费用2600元;租用2辆甲型汽车和1辆乙型汽车共需费用2500元,且同一型号汽车每辆租车费用相同.
(1)求租用辆甲型汽车、一辆乙型汽车的费用分别是多少元?
(2)若这个公司计划此次租车费用不超过5200元,通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用,
参考答案:
【答案】(1)设租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是900元;(2) 分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆. 三个方案的费用依次为5200元,5100元,5000元,所用最低费用为5000元.
【解析】
(1)首先设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y元,由题意,列出二元一次方程组,即可求解;
(2)首先设租用甲型汽车z辆,由题意,得出不等式组,解得2≤z≤4,又由 z是整数,所以共有3种方案,最后分别求出三种方案的费用,得出最低费用为5000元.
解:(1)设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y元,由题意,得:
解得:
(2)设租用甲型汽车z辆,由题意,得:
解得:2≤z≤4,
因为z是整数,所以z=2或3或4.所以共有3种方案,分别是
方案一:租用甲型汽车2辆,租用乙型汽车4辆;
方案二:租用甲型汽车3辆,租用乙型汽车3辆;
方案三:租用甲型汽车4辆,租用乙型汽车2辆.
三个方案的费用依次为5200元,5100元,5000元,所用最低费用为5000元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC是等边三角形,D、F分别为BC、AB边上的点,AF=BD,以AD为边作等边ΔADE.
(1)求证:AE=CF;
(2)求∠BEF的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).
请你回答:AP的最大值是 .
参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是 .(结果可以不化简)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,四边形ABCD的各顶点坐标分别为A(1,0),B(2,0),C(2,2),D(0,1),四边形BFGH的各顶点坐标分别为F(4,0),G(4,4),H(0,2),则下列说法正确的是( )

A. 四边形ABCD与四边形BFGH相似但不位似
B. 四边形ABCD与四边形BFGH位似但不相似
C. 四边形ABCD与四边形BFGH位似,且相似比为1∶

D. 四边形ABCD与四边形BFGH位似,且相似比为1∶2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于
的长为半径在AD的两侧作弧,交于两点M、N;第二步,连结MN,分别交AB、AC于点E、F;第三步,连结DE、DF..若BD=6,AF=4,CD=3,则BE的长是( )
A. 2 B. 4 C. 6 D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】★若两个扇形满足弧长的比等于它们半径的比,则称这两个扇形相似.如图,如果扇形AOB与扇形A1O1B1是相似扇形,且半径OA∶O1A1=k(k为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB∽△A1O1B1;③
=k;④扇形AOB与扇形A1O1B1的面积之比为k2.成立的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
相关试题