【题目】如图,在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形APQ.
![]()
(1)求点B的坐标.
(2)在点P运动过程中,∠ABQ的大小是否发生改变?若不改变,求出其大小;若改变,请说明理由.
(3)连接OQ,当OQ∥AB时,求点P的坐标.
参考答案:
【答案】(1) 点B的坐标为(
,1);(2)∠ABQ的大小始终不变,∠ABQ=90°;(3) P的坐标为(-
,0)
【解析】
(1)过点B作BC⊥x轴于点C,根据等边三角形的性质可得∠AOB=60°,BO=OA=2,从而求出∠BOC=30°,然后根据30°所对的直角边是斜边的一半和勾股定理即可求出BC和OC,从而求出点B的坐标;
(2)根据等边三角形的性质可得AP=AQ,AO=AB,∠PAQ=∠OAB=60°,从而证出∠PAO=∠QAB,然后利用SAS证出△APO≌△AQB,从而得出∠ABQ=∠AOP=90°;
(3)根据题意,画出图形,然后根据平行线的性质可得∠BQO=90°,∠BOQ=∠ABO=60°,从而求出∠OBQ=30°,然后根据30°所对的直角边是斜边的一半和勾股定理即可求出OQ和BQ,再根据(2)中全等可得OP=BQ,从而求出点P的坐标.
解:(1)如图①,过点B作BC⊥x轴于点C.
![]()
∵△AOB为等边三角形,且OA=2,
∴∠AOB=60°,BO=OA=2.
∴∠BOC=30°.
又∵∠OCB=90°,
∴BC=
OB=1,OC=
.
∴点B的坐标为(
,1).
(2)∠ABQ的大小始终不变.
∵△APQ,△AOB均为等边三角形,
∴AP=AQ,AO=AB,∠PAQ=∠OAB=60°.
∴∠PAO=∠QAB.
在△APO与△AQB中,
![]()
∴△APO≌△AQB(SAS).
∴∠ABQ=∠AOP=90°.
(3)如图②,当OQ∥AB时,点P在x轴的负半轴上,点Q在点B的下方,
![]()
∵AB∥OQ,
∴∠BQO=180°-∠ABQ=90°,∠BOQ=∠ABO=60°.
∴∠OBQ=30°.
又OB=OA=2,
∴OQ=
OB=1,BQ=
,
由(2)可知,△APO≌△AQB,
∴OP=BQ=
.
∴此时点P的坐标为(-
,0).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司到果品基地购买某种优质水果慰问医务工作者,果品基地对购买量在3000kg以上(含3000kg)的顾客采用两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由自己租车运回,已知该公司租车从基地到公司的运输费用为5000元
(1)分别写出该公司两种购买方案付款金额
(元)与所购的水果
之间的函数关系式,并写出自变量
的取值范围.(2)依据购买量判断,选择哪种方案付款少?并说理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在同一平面直角坐标系中,一次函数
)和二次函数
)的图象可能为( )
A. A B. B C. C D. D
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列解方程组的部分过程,回答下列问题
解方程组

现有两位同学的解法如下:
解法一;由①,得x=2y+5,③
把③代入②,得3(2y+5)﹣2y=3.……
解法二:①﹣②,得﹣2x=2.……
(1)解法一使用的具体方法是________,解法二使用的具体方法是______,以上两种方法的共同点是________.
(2)请你任选一种解法,把完整的解题过程写出来
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )

A.2B.2.5或3.5
C.3.5或4.5D.2或3.5或4.5
-
科目: 来源: 题型:
查看答案和解析>>【题目】先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)
(1)正比例函数
过( 0 , )和( 1 , );(2)一次函数
( 0 , )( , 0 ).
-
科目: 来源: 题型:
查看答案和解析>>【题目】下图反映的过程是王老师步行从家去书店买书,又去超市买菜, 然后回家.其中x表示时间,y表示王老师离家的距离.根据图象回答下列问题:
(1)书店离王老师家多远?王老师从家到书店用了多少时间?
(2)超市离书店多远?超市离王老师家多远?王老师从超市走回家平均速度是多少?

相关试题