【题目】某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:
(1)将条形统计图补充完整;
(2)抽查的学生劳动时间的众数为______,中位数为_______;
(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?
![]()
参考答案:
【答案】(1)见解析(2)1.5、1.5(3)216
【解析】
(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数;
(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;
(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.
(1)根据题意得:30÷30%=100(人),
∴学生劳动时间为“1.5小时”的人数为100(12+30+18)=40(人),
补全统计图,如图所示:
![]()
(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,
故答案为:1.5、1.5;
(3)1200×18%=216,
答:估算该校学生参加义务劳动2小时的有216人
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算(或化简)下列各题
(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4)
(2)﹣42÷(﹣2)3+|﹣
|×(﹣8)(3)(﹣36)×(
)(4)(﹣3)2﹣[(﹣
)+(﹣
)]÷
(5)2(m﹣1)﹣(2m﹣3)
(6)(5ab+3a2)﹣2(a2+2ab)
(7)先化简,再求值:
x﹣2(x﹣
y)+(﹣
x+
y),其中x=﹣2,y=
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,直线y=kx(k≠0)沿着y轴向上平移3个单位长度后,与x轴交于点B(3,0),与y轴交于点C,抛物线y=x2+bx+c过点B、C且与x轴的另一个交点为A.
(1)求直线BC及该抛物线的表达式;
(2)设该抛物线的顶点为D,求△DBC的面积;
(3)如果点F在y轴上,且∠CDF=45°,求点F的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(阅读理解)
点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.
例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.
(知识运用)
如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.
(1)数 所表示的点是{M,N}的奇点;数 所表示的点是{N,M}的奇点;
(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,当P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,在射线BC任取一点M,联结DM,作∠MDN=∠BDC,∠MDN的另一边DN交直线BC于点N(点N在点M的左侧).
(1)当BM的长为10时,求证:BD⊥DM;
(2)如图(1),当点N在线段BC上时,设BN=x,BM=y,求y关于x的函数关系式,并写出它的定义域;
(3)如果△DMN是等腰三角形,求BN的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某市区自2014年1月起,居民生活用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):
月用水量(吨)
水价(元/吨)
第一级 20吨以下(含20吨)
1.6
第二级 20吨﹣30吨(含30吨)
2.4
第三级 30吨以上
3.2
例:某用户的月用水量为32吨,按三级计量应缴水费为:
1.6×20+2.4×10+3.2×2=62.4(元)
(1)如果甲用户的月用水量为12吨,则甲需缴的水费为 元;
(2)如果乙用户缴的水费为39.2元,则乙月用水量 吨;
(3)如果丙用户的月用水量为a吨,则丙用户该月应缴水费多少元?(用含a的代数式表示,并化简)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A、B在反比例函数y=-
的图象上,且点A、B的横坐标分别为a、2a(a<0).(1)求△AOB的面积;
(2)若点C在x轴上,点D在y轴上,且四边形ABCD为正方形,求a的值.

相关试题