【题目】如图,已知:在直角坐标系中,A(﹣2,4)B(﹣4,2);A1、B1是A、B关于y轴的对称点;
(1)请在图中画出A、B关于原点O的对称点A2,B2(保留痕迹,不写作法);并直接写出A1、A2、B1、B2的坐标.
(2)试问:在x轴上是否存在一点C,使△A1B1C的周长最小,若存在求C点的坐标,若不存在说明理由.
![]()
参考答案:
【答案】(1)点A1、A2、B1、B2的坐标分别为(2,4),(4,2),(2,﹣4),(4,﹣2);(2)存在.![]()
【解析】
(1)如图,分别延长AO和BO,使A2O=AO,B2O=BO,从而得到点A2,B2,然后利用关于y轴对称和原点对称的点的坐标特征写出点A1、A2、B1、B2的坐标;
(2)连接A1B2交x轴于C,如图,利用点B1与B2关于x轴对称得到CB1=CB2,利用两点之间线段最短得到此时CA1+CB1的值最小,所以△A1B1C的周长最小,接着利用待定系数法求出直线A1B2的解析式为y=3x+10,然后求出直线与x轴的交点坐标即可.
解:(1)如图,点A2,B2为所作,点A1、A2、B1、B2的坐标分别为(2,4),(4,2),(2,﹣4),(4,﹣2);
(2)存在.
连接A1B2交x轴于C,如图,
∵点B1与B2关于x轴对称,
∴CB1=CB2,
∴CA1+CB1=CA1+CB2=A1B2,
此时CA1+CB1的值最小,则△A1B1C的周长最小,
设直线A1B2的解析式为y=kx+b,
把A1(2,4),B2(4,﹣2)代入得
,解得
,
∴直线A1B2的解析式为y=﹣3x+10,
当y=0时,﹣3x+10=0,解得x=
,
∴C点坐标为(
,0).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的袋子中,装有2个红球,1个白球,1个黄球,这些球除颜色外都相同.求下列事件的概率:
(1)搅匀后从中任意摸出1个球,恰好是红球;
(2)搅匀后从中任意摸出2个球,2个都是红球.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:一个正比例函数与一个一次函数的图象交于点A(1,4)且一次函数的图象与x轴交于点B(3,0),坐标原点为O.
(1)求正比例函数与一次函数的解析式;
(2)若一次函数交与y轴于点C,求△ACO的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司在某市五个区投放共享单车供市民使用,投放量的分布及投放后的使用情况统计如下.

(1)该公司在全市一共投放了 万辆共享单车;
(2)在扇形统计图中,B区所对应扇形的圆心角为 °;
(3)该公司在全市投放的共享单车的使用量占投放量的85%,请计算C区共享单车的使用量并补全条形统计图.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
ABC中,∠ACB=90°,∠ABC=22.5°,将
ABC 绕着点C顺时针旋转,使得点A的对应点D落在边BC上,点B的对应点是点E,连接BE.下列说法中,正确的有( )
①DE⊥AB ②∠BCE是旋转角 ③∠BED=30° ④
BDE与
CDE面积之比是
:1A. 1个B. 2个C. 3个D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,
OAB是边长为4的等边三角形,OD是AB边上的高,点P是OD上的一个动点,若点C的坐标是
,则PA+PC的最小值是_________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,
ABC的顶点均在格点上.(1)先将
ABC向上平移4个单位后得到的
A1B1C1,再将
A1B1C1绕点C1按顺时针方向旋转90°后所得到的
A2B2 C1,在图中画出
A1B1C1和
A2B2 C1.(2)
A2B2 C1能由
ABC绕着点O旋转得到,请在网格上标出点O.
相关试题