【题目】如图,直线
表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )
![]()
A.一处B.二处C.三处D.四处
参考答案:
【答案】D
【解析】
由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.
解:∵△ABC内角平分线的交点到三角形三边的距离相等,
∴△ABC内角平分线的交点满足条件;
如图:点P是△ABC两条外角平分线的交点,
过点P作PE⊥AB,PD⊥BC,PF⊥AC,
∴PE=PF,PF=PD,
∴PE=PF=PD,
∴点P到△ABC的三边的距离相等,
∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;
综上,到三条公路的距离相等的点有4处,
∴可供选择的地址有4处.
故选:D
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中: ①abc<0;②4ac﹣b2>0;③a﹣b+c>2;④a<b<0;⑤ac+2=b,
正确的个数有________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“迷你三点矩形”.
如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“迷你三点矩形”.
如图2,已知M(4,1),N(-2,3),点P(m,n).
(1)①若m=1,n=4,则点M,N,P的“迷你三点矩形”的周长为 ,面积为 ;
②若m=1,点M,N,P的“迷你三点矩形”的面积为24,求n的值;
(2)若点P在直线y=-2x+4上.当点M,N,P的“迷你三点矩形”为正方形时,直接写出点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=
x2﹣
x+3与x轴交于A,B两点,与y轴交于点C,点M的坐标为(2
, 1).以M为圆心,2为半径作⊙M.则下列说法正确的是________(填序号).①tan∠OAC=
;②直线AC是⊙M的切线;
③⊙M过抛物线的顶点;
④点C到⊙M的最远距离为6;
⑤连接MC,MA,则△AOC与△AMC关于直线AC对称.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,数轴上的A,B,C三点所表示的数分别为a,b,c,其中AB=BC.如果
,那么该数轴的原点O的位置应该在( )
A.点A的左边
B.点A与点B之间
C.点B与点C之间(靠近点B)
D.点C的右边
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②3a+c<0,③a﹣b+c>0,④4a+2b+c>0,⑤若点(﹣2,y1)和(﹣
,y2)在该图象上,则y1>y2,其中正确的结论是 .(填入正确结论的序号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】.如图,一条生产线的流水线上依次有5个机器人,它们站立的位置在数轴上依次用点A1,A2,A3,A4,A5表示.

(1)若原点是零件的供应点,5个机器人分别到供应点取货的总路程是多少?
(2)若将零件的供应点改在A1,A3,A5中的其中一处,并使得5个机器人分别到达供应点取货的总路程最短,你认为应该在哪个点上?通过计算说明理由.
相关试题