【题目】如图,已知矩形纸片ABCD中,AB=12,BC=16.将矩形纸片ABCD折叠,使点B与点D重合,点A折叠至点E处,GH为折痕,连接BG.
(1)△DGH是等腰三角形吗?请说明你的理由.
(2)求线段AG的长;
(3)求折痕GH的长.
![]()
参考答案:
【答案】(1)△ DGH是等腰三角形,理由见解析;(2) AG=3.5;(3)折痕GH的长为15.
【解析】
(1)由翻折,找着重合的部分,得到相等的边,相等的角,再根据两直线平行,内错角相等可得即可证明;
(2)设出未知数,用未知数表示出相关的量,应用勾股定理,列出方程可求得答案.
(3)由(2)知BG=DG=16-3.5=12.5,因为 DG=DH=BH,GE∥DH,从而求出四边形BHDG是菱形,再利用勾股定理列式求出BD,然后根据菱形的面积列出方程求解即可.
(1)
DGH是等腰三角形,理由如下:在矩形ABCD中,∵AD∥BC,∴∠DGH=∠BHG,由折叠知∠DHG=∠BHG,∴∠DGH=∠DHG,∴DG=DH,即
DGH是等腰三角形;
(2)由折叠知AG=GE,设AG=x,则BG=DG=16-x,∵∠A=90°,
,∴
,解得x=3.5,∴AG=3.5;
(3)由(2)知BG=DG=16-3.5=12.5,∵DG=DH=BH,GE∥DH,∴四边形BHDG是平行四边形,∴四边形BHDG是菱形.;
法一:作GF⊥BC于点F,则BF=AG=3.5,GF=AB=12,∴FH=BH-BF=12.5-3.5=9,
∴GH=
=
,∴折痕GH的长为15.;
法二:连接BD,则BD=
=
=20,∵四边形BHDG是菱形,
∴S菱形BHDG=BH·AB=
BD·GH,∴GH=
=15,∴折痕GH的长为15..
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠1=80°,∠2=100°,∠C=∠D.
(1)判断AC与DF的位置关系,并说明理由;
(2)若∠C比∠A大20°,求∠F的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=6cm,AC=12cm,动点D以1cm/s 的速度从点A出发到点B止,动点E以2cm/s 的速度从点C出发到点A止,且两点同时运动,当以点A、D、E为顶点的三角形与△ABC相似时,求运动的时间t.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB=2,求m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=kx+b与x轴,y轴分别交于A,B两点,且经过点(4,b+3).
(1)求k的值;
(2)若AB=OB+2,
①求b的值;
②点M为x轴上一动点,点N为坐标平面内另一点.若以A,B,M,N为顶点的四边形是菱形,请直接写出所有符合条件的点N的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由;
(2)如图2,直线EF上有两点A、C,分别引两条射线AB、CD.已知∠BAF=150°,∠DCF=80°,射线AB、CD分别绕点A、点C以1度/秒和3度/秒的速度同时顺时针转动,设时间为t秒,当射线CD转动一周时,两条射线同时停止.则当直线CD与直线AB互相垂直时,t= 秒.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)a2+b2﹣4a+4=0,则a= .b= .
(2)已知x2+2y2﹣2xy+6y+9=0,求xy的值.
(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长
相关试题