【题目】已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB=2,求m的值.
参考答案:
【答案】解:设点A(α,0),点B的坐标为(β,0)
则一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0的两根为α、β,
∴α+β=﹣
,αβ=﹣
,
∴|α﹣β|=
=2,
∴(α+β)2﹣4αβ=4,
即(﹣
)2+
=4,
解得m=2或m= ![]()
【解析】抓住已知点A、B是抛物线与x轴的两交点坐标,设点A(α,0),点B的坐标为(β,0),可知一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0的两根为α、β,再利用根与系数的关系求出α+β和αβ的值,再根据AB=|α﹣β|=2,列出关于m的方程求解即可。
【考点精析】利用根与系数的关系和二次函数图象以及系数a、b、c的关系对题目进行判断即可得到答案,需要熟知一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商;二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算
(1)(2﹣π)0+(
)﹣2+(﹣2)3 (2)(﹣3a6)2﹣a22a10+(﹣2a2)3a3
(3)(x+1)2﹣(1﹣2x)(1+2x)
(4)(x+2)(x﹣3)﹣x(x+1)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠1=80°,∠2=100°,∠C=∠D.
(1)判断AC与DF的位置关系,并说明理由;
(2)若∠C比∠A大20°,求∠F的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=6cm,AC=12cm,动点D以1cm/s 的速度从点A出发到点B止,动点E以2cm/s 的速度从点C出发到点A止,且两点同时运动,当以点A、D、E为顶点的三角形与△ABC相似时,求运动的时间t.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知矩形纸片ABCD中,AB=12,BC=16.将矩形纸片ABCD折叠,使点B与点D重合,点A折叠至点E处,GH为折痕,连接BG.
(1)△DGH是等腰三角形吗?请说明你的理由.
(2)求线段AG的长;
(3)求折痕GH的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=kx+b与x轴,y轴分别交于A,B两点,且经过点(4,b+3).
(1)求k的值;
(2)若AB=OB+2,
①求b的值;
②点M为x轴上一动点,点N为坐标平面内另一点.若以A,B,M,N为顶点的四边形是菱形,请直接写出所有符合条件的点N的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由;
(2)如图2,直线EF上有两点A、C,分别引两条射线AB、CD.已知∠BAF=150°,∠DCF=80°,射线AB、CD分别绕点A、点C以1度/秒和3度/秒的速度同时顺时针转动,设时间为t秒,当射线CD转动一周时,两条射线同时停止.则当直线CD与直线AB互相垂直时,t= 秒.

相关试题