【题目】(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由;
(2)如图2,直线EF上有两点A、C,分别引两条射线AB、CD.已知∠BAF=150°,∠DCF=80°,射线AB、CD分别绕点A、点C以1度/秒和3度/秒的速度同时顺时针转动,设时间为t秒,当射线CD转动一周时,两条射线同时停止.则当直线CD与直线AB互相垂直时,t= 秒.
![]()
参考答案:
【答案】(1)平行.理由见解析;(2)20或110.
【解析】
(1)依据题意得出∠1+∠5=∠2+∠6,即可得到a∥b;
(2)分两种情况讨论:当BA⊥CD于G时,∠BAE=30°+t°=∠CAG,∠ACG=180°﹣80°﹣3t°=100°﹣3t°;当D'C⊥AB于H时,∠BAE=30°+t°,∠ACH=3t°﹣180°﹣100°,分别依据角的和差关系进行计算即可.
解:(1)平行.理由如下:
如图1,∵∠3=∠4,
∴∠5=∠6,
∵∠1=∠2,
∴∠1+∠5=∠2+∠6,
∴a∥b;
![]()
(2)如图,当BA⊥CD于G时,∠BAE=30°+t°=∠CAG,∠ACG=180°﹣80°﹣3t°=100°﹣3t°,
![]()
∵∠CAG+∠ACG=90°,
∴30°+t°+100°﹣3t°=90°,
解得t=20;
如图,当D'C⊥AB于H时,∠BAE=30°+t°,∠ACH=3t°﹣180°﹣100°,
![]()
∵∠BAE=∠ACH+∠AHC,
∴30°+t°=3t°﹣180°﹣100°+90°,
解得t=110,
综上所述,当直线CD与直线AB互相垂直时t的值为20或110.
故答案为:20或110.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB=2,求m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知矩形纸片ABCD中,AB=12,BC=16.将矩形纸片ABCD折叠,使点B与点D重合,点A折叠至点E处,GH为折痕,连接BG.
(1)△DGH是等腰三角形吗?请说明你的理由.
(2)求线段AG的长;
(3)求折痕GH的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=kx+b与x轴,y轴分别交于A,B两点,且经过点(4,b+3).
(1)求k的值;
(2)若AB=OB+2,
①求b的值;
②点M为x轴上一动点,点N为坐标平面内另一点.若以A,B,M,N为顶点的四边形是菱形,请直接写出所有符合条件的点N的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)a2+b2﹣4a+4=0,则a= .b= .
(2)已知x2+2y2﹣2xy+6y+9=0,求xy的值.
(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠C=90°,
(1)若a=4,b=3,则c=_______;
(2)若a=24,c=30,则b=_______;
(3)若BC=11,AB=61,则AC=_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在方格纸中,每个小正方形的边长为1个单位长度,△ABC的顶点都在格点上.

(1)画出△ABC先向右平移6格,再向上平移1格所得的△A′B′C′;
(2)画出△ABC的AB边上的中线CD和高线CE;
(3)求△ABC的面积.
相关试题