【题目】胖娃、猴子两人在1800米长的直线道路上跑步,胖娃、猴子两人同起点、同方向出发,并分别以不同的速度匀速前进.已知,胖娃出发30秒后,猴子出发,猴子到终点后立即返回,并以原来的速度前进,最后与胖娃相遇,此时跑步结束. 如图,
(米)表示胖娃、猴子两人之间的距离,x(秒)表示胖娃出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系.那么,猴子到终点后_______秒与胖娃相遇.
![]()
参考答案:
【答案】![]()
【解析】
根据速度=路程÷时间可求出胖娃的速度,由猴子的速度=胖娃的速度+二者速度差可求出猴子的速度,利用时间=路程÷速度可求出猴子到达终点的时间,结合路程=速度×时间可求出此时胖娃离终点的距离,再根据相遇所需时间=胖娃离终点的距离÷胖娃、猴子速度和,即可得出结论.
胖娃的速度为90÷30=3(米/秒),
猴子的速度为3+90÷(12030)=4(米/秒).
猴子到达终点时,胖娃出发的时间为1800÷4+30=480(秒),
此时胖娃离终点的距离为18003×480=360(米),
猴子返回后与胖娃相遇的时间为360÷(3+4)=
(秒).
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0)、C(2,3)两点,与y轴交于点N,其顶点为D.
(1)求抛物线及直线AC的函数关系式;
(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;
(3)设点M(3,n),求使MN+MD取最小值时n的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】王师傅承包了一片池塘养水产品,他用总长为88m的围网围成如图所示的5个区域,其中②③④⑤四个区域面积相等.设AH=xm,整个矩形区域的面积为ym2.
(1)求y与x之间的函数关系式,并注明自变量x的取值范围;
(2)当x为何值时,y取最大值?最大值是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形由3颗棋子,第②个图形一共有9颗棋子,第③个图形一共有18个棋子,…,则第⑥个图形中棋子的颗数为( )

A.63B.84C.108D.152
-
科目: 来源: 题型:
查看答案和解析>>【题目】重庆电视台组织了一次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.
(1)参加这次夏令营活动的初中生共有__________人.
(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款. 结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元,把每个学生的捐款数(以元为单位)一一记录下来,则在这组数据中,中位数是 元,求出平均每人捐款多少元?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,直线l1:y=2x+3与直线l2:y=kx+b的交点A在y轴上,直线l3:y=x与直线l1相交于点B与直线l2相交于点C(1,1).
(1)求直线l2的解析式和B点的坐标;
(2)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司生产某种产品的成本是200元/件,售价是250元/件,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费用x万元,产品的年销售量将是原销售量的y倍,且y与x之间满足二次函数关系:y=﹣0.001x2+0.06x+1.
(1)如果把利润看作是销售总额减去成本费用和广告费用,试求出年利润S(万元)与广告费用x(万元)的函数关系式(无需自变量的取值范围);
(2)如果公司年投入的广告费不低于10万元且不高于50万元,求年利润S的最大值;
(3)若公司希望年利润在776万元到908万元之间(含端点),请从节约支出的角度直接写出广告费x的取值范围.
相关试题