【题目】如图,在平行四边形ABCD中,点E在BC边上,且CE︰BC=2︰3,AC与DE相交于点F,若S△EFC=8,则S△CFD=________.
![]()
参考答案:
【答案】12
【解析】由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE:BC=2:3,由此即可得到△AFD∽△CFE,它们的相似比为3:2,利用相似三角形的性质得到FD:FE=3:2,即S△CDF:S△EFC=3:2,由此即可求解.
∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,而CE:BC=2:3,∴△AFD∽△CFE,且它们的相似比为3:2,∴FD:FE=3:2,∴S△CDF:S△EFC=3:2,而S△EFC=8,∴S△DFC=12.
故答案为:12.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )

A. AE=AFB. EF⊥ACC. ∠B=60°D. AC是∠EAF的平分线
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=
(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA= ,k= ,点E的坐标为 ;
(2)当1≤t≤6时,经过点M(t﹣1,﹣
t2+5t﹣
)与点N(﹣t﹣3,﹣
t2+3t﹣
)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣
x2+bx+c的顶点.①当点P在双曲线y=
上时,求证:直线MN与双曲线y=
没有公共点;②当抛物线y=﹣
x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=10cm,点P从点B出发,沿BA方向以每秒
cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1 cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,当四边形QPBP′为菱形时,t的值为____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】求证:角平分线和中线重合的三角形是等腰三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】请完成下面的解答过程完.如图,∠1=∠B,∠C=110°,求∠3的度数.

解:∵∠1=∠B
∴AD∥( )(内错角相等,两直线平行)
∴∠C+∠2=180°,( )
∵∠C=110°.
∴∠2=( )°.
∴∠3=∠2=70°.( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)尺规作图:如图,AB为⊙O的直径,过点A作⊙O的切线m;

(2)在直线m上任取一点P(A点除外),连接PB交圆O与点C,请补全图形,并证明:

相关试题