【题目】如图,在四边形ABCD中,AC、BD相交于点F,点E在BD上,且
. ![]()
(1)试问:∠BAE与∠CAD相等吗?为什么?
(2)试判断△ABE与△ACD是否相似?并说明理由.
参考答案:
【答案】
(1)解:∠BAE与∠CAD相等.
理由:∵
,
∴△ABC∽△AED,
∴∠BAC=∠EAD,
∴∠BAE=∠CAD
(2)解:△ABE与△ACD相似.
∵
=
,
∴
=
.
在△ABE与△ACD中,
∵
=
,∠BAE=∠CAD,
∴△ABE∽△ACD
【解析】(1)先根据题意得出△ABC∽△AED,由相似三角形的性质即可得出结论;(2)先根据题意得出
=
,再由∠BAE=∠CAD即可得出结论.
【考点精析】通过灵活运用相似三角形的判定,掌握相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△EFG≌△NMH, ∠F与∠M是对应角.

(1)写出相等的线段与相等的角;
(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=x2+bx+c的图象与直线y=x+1相交于点A(﹣1,m)和点B(n,5).

(1)求该二次函数的关系式;
(2)在给定的平面直角坐标系中,画出这两个函数的大致图象;
(3)结合图象直接写出x2+bx+c>x+1时x的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=x2﹣(2m+1)+(
m2﹣1).
(1)求证:不论m取什么实数,该二次函数图象与x轴总有两个交点;
(2)若该二次函数图象经过点(2m﹣2,﹣2m﹣1),求该二次函数的表达式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高1.5米的标杆BC、DE,两杆相距30米,测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H、B、F、D、G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,以BC为半径作⊙B,交AB于点D,交AB的延长线于点E,连接CD、CE.

(1)求证:△ACD∽△AEC;
(2)当
=
时,求tanE;
(3)若AD=4,AC=4
,求△ACE的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,试求∠DFB和∠DGB的度数.

相关试题