【题目】(1)计算:(a+b)2﹣b(2a+b)
(2)解不等式:(3x+4)(3x-4)<9(x-2)(x+3)
参考答案:
【答案】(1)a2;(2)x>
.
【解析】
(1)根据完全平方公式,以及单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可;
(2)首先利用多项式的乘法法则化简等号两边的式子,然后移项、合并同类项、系数化为1即可求得不等式的解集.
(1)(a+b)2-b(2a+b)=a2+2ab+b2-2ab-b2=a2;
(2)(3x+4)(3x-4)<9(x-2)(x+3),
9x2-16<9(x2+x-6),
即9x2-16<9x2+9x-54,
移项,得9x2-9x2-9x<-54+16,
合并同类项,得-9x<-38,
系数化为1得x>
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“五一”期间,甲、乙两家商店以同样价格销售相同的商品,两家优惠方案分别为:甲店一次性购物中超过200元后的价格部分打七折;乙店一次性购物中超过500元后的价格部分打五折,设商品原价为x元(x≥0),购物应付金额为y元.
(1)求在甲商店购物时y与x之间的函数关系;
(2)两种购物方式对应的函数图象如图所示,求交点C的坐标;
(3)根据图象,请直接写出“五一”期间选择哪家商店购物更优惠.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)问t为何值时,△BCP为等腰三角形?(要有必要的过程)

-
科目: 来源: 题型:
查看答案和解析>>【题目】问题背景:已知在△ABC中,边AB上的动点D由A向B运动(与A,B不重合),同时点E由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于点F,点H是线段AF上一点,求
的值.
(1)初步尝试
如图(1),若△ABC是等边三角形,DH⊥AC,且点D、E的运动速度相等,小王同学发现可以过点D作DG∥BC交AC于点G,先证GH=AH,再证GF=CF,
从而求得
的值为 . 
(2)类比探究
如图(2),若△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是
:1,求
的值.
(3)延伸拓展
如图(3)若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记
=m,且点D、E的运动速度相等,试用含m的代数式表示
的值(直接写出果,不必写解答过程).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx﹣3与x轴交于点A(1,0)和点B,与y轴交于点C,且其对称轴l为x=﹣1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).

(1)直接写出抛物线的解析式;
(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;
(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:

(1)如果∠1=∠B,那么_______∥_______,根据是__________________________;
(2)如果∠3=∠D,那么_______∥_______,根据是__________________________;
(3)如果要使BE∥DF,必须∠1=∠_______,根据是_________________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】仔细阅读材料,再尝试解决问题:
完全平方式
以及
的值为非负数的特点在数学学习中有广泛的应用,比如探求
的最大(小)值时,我们可以这样处理:解:原式 =
.因为无论
取什么数,都有
的值为非负数,所以
的最小值为0;此时
时,进而
的最小值是
;所以当
时,原多项式的最小值是
.请根据上面的解题思路,探求:
⑴.多项式
的最小值是多少,并写出对应的
的取值;⑵.多项式
的最大值是多少,并写出对应的
的取值.
相关试题