【题目】两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”
为了便于记忆,同学们可仿照图用双手表示“三线八角”
两大拇指代表被截直线,食指代表截线
下列三幅图依次表示
![]()
![]()
A. 同位角、同旁内角、内错角B. 同位角、内错角、同旁内角
C. 同位角、对顶角、同旁内角D. 同位角、内错角、对顶角
参考答案:
【答案】B
【解析】
两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角,据此作答即可.
解:根据同位角、内错角、同旁内角的概念,可知
第一个图是同位角,第二个图是内错角,第三个图是同旁内角.
所以B选项是正确的,
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等腰直角三角形,∠A=90°,BC=4.
(1)建立适当的平面直角坐标系,写出各个顶点的坐标;
(2)将△ABC向左平移5个单位,请在图中画出平移后的△A1B1C1;
(3)将△A1B1C1绕点C1按逆时针旋转90°,请在图中画出旋转后的△A2B2C1.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在∠A内部有一点P,连接BP、CP,请回答下列问题:

(1)求证:∠P=∠1+∠A+∠2;
(2)如图2,利用上面的结论,在五角星中,∠A+∠B+∠C+∠D+∠E= ;
(3)如图3,如果在∠BAC间有两个向上突起的角,请你根据前面的结论猜想∠1、∠2、∠3、∠4、∠5、∠A之间有什么等量关系,直接写出结论即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知直角梯形ABCO中,∠AOC=90°,AB∥x轴,AB=6,若以O为原点,OA,OC所在直线为y轴和x轴建立如图所示直角坐标系,A(0,a),C(c,0)中a,c满足|a+c﹣10|+
=0(1)求出点A、B、C的坐标;
(2)如图2,若点M从点C出发,以2单位/秒的速度沿CO方向移动,点N从原点出发,以1单位/秒的速度沿OA方向移动,设M、N两点同时出发,且运动时间为t秒,当点N从点O运动到点A时,点M同时也停止运动,在它们的移动过程中,当2S△ABN≤S△BCM时,求t的取值范围:
(3)如图3,若点N是线段OA延长上的一动点,∠NCH=k∠OCH,∠CNQ=k∠BNQ,其中k>1,NQ∥CJ,求
的值(结果用含k的式子表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,已知正比例函数y=
x的图象与反比例函数y=
的图象交于A(a,-2),B两点.(1)求反比例函数的表达式和点B的坐标;
(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图,
与
是直线________和________被直线________所截得的________角.
(2)
与
是直线________和________被直线________所截得的________角.(3)
与
是直线________和________被直线________所截得的________角. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图是一个跳棋棋盘,其游戏规则是一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上例如:从起始位置
跳到终点位置
有两种不同路径,路径1:
;路径2:
.
试一试:(1)写出从起始位置
跳到终点位置
的一种路径;(2)从起始位置
依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点位置
?
相关试题