【题目】在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.
(1)若正方形ABCD边长为3,DF=4,求CG的长;
(2)求证:EF+EG=
CE.
![]()
参考答案:
【答案】(1)
;(2)证明见解析.
【解析】
试题(1)根据正方形的性质可得∠BCG=∠DCB=∠DCF=90°,BC=DC,再根据同角的余角相等求出∠CBG=∠CDF,然后利用“角边角”证明△CBG和△CDF全等,根据全等三角形对应边相等可得BG=DF,再利用勾股定理列式计算即可得解;
(2)过点过点C作CM⊥CE交BE于点M,根据全等三角形对应边相等可得CG=CF,全等三角形对应角相等可得∠F=∠CGB,再利用同角的余角相等求出∠MCG=∠ECF,然后利用“角边角”证明△MCG和△ECF全等,根据全等三角形对应边相等可得MG=EF,CM=CE,从而判断出△CME是等腰直角三角形,再根据等腰直角三角形的性质证明即可.
试题解析:(1)解:∵四边形ABCD是正方形,
∴∠BCG=∠DCB=∠DCF=90°,BC=DC,
∵BE⊥DF,
∴∠CBG+∠F=∠CDF+∠F,
∴∠CBG=∠CDF,
在△CBG和△CDF中,
,
∴△CBG≌△CDF(ASA),
∴BG=DF=4,
∴在Rt△BCG中,CG2+BC2=BG2,
∴CG=
;
(2)证明:如图,过点C作CM⊥CE交BE于点M,
![]()
∵△CBG≌△CDF,
∴CG=CF,∠F=∠CGB,
∵∠MCG+∠DCE=∠ECF+∠DCE=90°,
∴∠MCG=∠ECF,
在△MCG和△ECF中,
,
∴△MCG≌△ECF(SAS),
∴MG=EF,CM=CE,
∴△CME是等腰直角三角形,
∴ME=
CE,
又∵ME=MG+EG=EF+EG,
∴EF+EG=
CE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2017山东省菏泽市,第20题,7分)如图,一次函数y=kx+b与反比例函数
的图象在第一象限交于A、B两点,B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;
(2)求△AOB的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.
(1)该水果店主购进第一批这种水果的单价是多少元?
(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为打造引江枢纽风光带,一段长为1.2千米的河道整治任务交由甲、乙两个工程队接力完成,共用时60天. 已知甲队每天整治24米,乙队每天整治16米.
(1)根据题意,小明、小丽分别列出如下的一元一次方程(尚不完整): 小明:
. 小丽:
=60. 请分别指出上述方程中
的意义,并补全方程: 小明:
表示 . 小丽:
表示 .(2)请选择其中一种方法,求甲、乙两队分别整治河道多少米?(写出完整的解答过程)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
、
在直线
上,
,点
线段
的中点,点
是直线
上的一个动点.(1)若
,求
的长;(2)若
是线段
的中点,
是
的中点,求
的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】定义:若
,则称
与
是关于
的关联数.例如:若
,则称
与
是关于2的关联数;(1)若3与
是关于2的关联数,则
_______.(2)若
与
是关于2的关联数,求
的值.(3)若
与
是关于
的关联数,
,
的值与
无关,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:
关于x的方程:
的解是
,
;
即
的解是
;
的解是
,
;
的解是
,
;
请观察上述方程与解的特征,比较关于x的方程
与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.
由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:
.
相关试题