【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 . ![]()
参考答案:
【答案】1.2
【解析】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小) ![]()
∵∠A=∠A,∠AMF=∠C=90°,
∴△AFM∽△ABC,
∴
=
,
∵CF=2,AC=6,BC=8,
∴AF=4,AB=
=10,
∴
=
,
∴FM=3.2,
∵PF=CF=2,
∴PM=1.2
∴点P到边AB距离的最小值是1.2.
故答案为1.2.
如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到
=
求出FM即可解决问题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC中,∠A,∠B,∠C的对边分别为a、b、c,下列说法中错误的是( )
A.如果∠C-∠B=∠A,则△ABC是直角三角形,且∠C=90;
B.如果
,则△ABC是直角三角形,且∠C=90;C.如果(c+a)( c-a)=
,则△ABC是直角三角形,且∠C=90;D.如果∠A:∠B:∠C=3:2:5,则△ABC是直角三角形,且∠C=90.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,关于 x,y 的方程组
的解满足 x<0,y>0.(1)x= ,y= (用含 a 的代数式表示);
(2)求 a 的取值范围;
(3)若 2x8y=2m,用含有 a 的代数式表示 m,并求 m 的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK的顶点均为小正方形的顶点.

(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD位似,且位似比为2:1;
(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(
取1.73) 
(1)求楼房的高度约为多少米?
(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,点G在对角线BD上
不与点
重合
于点
于点F,连结AG.
写出线段
长度之间的数量关系,并说明理由;
若正方形ABCD的边长为
,求线段BG的长.
相关试题