【题目】如图.AB是⊙O的直径,E为弦AP上一点,过点E作EC⊥AB于点C,延长CE至点F,连接FP,使∠FPE=∠FEP,CF交⊙O于点D. ![]()
(1)证明:FP是⊙O的切线;
(2)若四边形OBPD是菱形,证明:FD=ED.
参考答案:
【答案】
(1)证明:连接OP,
![]()
∵OP=OA,
∴∠A=∠APO,
∵EC⊥AB,
∴∠A+∠AEC=90°,
∵∠FPE=∠FEP,∠FEP=∠AEC,
∴∠AEC=∠FPE,
∴∠OPA+∠FPA=90°,
∴OP⊥PF,
∴FP是⊙O的切线
(2)证明:∵四边形OBPD是菱形,
∴PB=OB,
∵OB=OP,
∴OP=OB=PB,
∴△OPB是等边三角形,
∴∠B=∠BOP=60°,
∴∠A=30°,
∴∠AEC=∠FEP=60°,
∴∠FPE=∠FEP=60°,
∴△FPE是等边三角形,
∵PD∥AB,
∴PD⊥EF,
∴FD=ED.
【解析】(1)连接OP,根据等腰三角形的性质得到∠A=∠APO,根据垂直的定义得到∠A+∠AEC=90°,等量代换得到∠AEC=∠FPE,于是得到OP⊥PF,根据切线的判定定理即可得到结论;(2)根据菱形的性质得到PB=OB,推出△OPB是等边三角形,得到∠B=∠BOP=60°,于是得到△FPE是等边三角形,根据等边三角形的性质即可得到结论.
【考点精析】认真审题,首先需要了解菱形的性质(菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半),还要掌握垂径定理(垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧)的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD为正方形,边长为4,E为AD延长线上一点,DE=x(0<x<4),在AE上取一点M,连接CM,将△CME沿CM对折,若点E恰落在线段AB上的点F处,则AM= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了解全校2000名学生每周去图书馆时间的情况,随机调查了其中的100名学生,对这100名学生每周去图书馆的时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周去图书馆的时间在6≤x<8小时的学生人数占20%.根据以上信息及统计图解答下列问题:

(1)本次调查属于调查,样本容量是;
(2)请补全频数分布直方图中空缺的部分;
(3)若从这100名学生中随机抽取1名学生,求抽取的这个学生每周去图书馆的时间恰好在8﹣10小时的概率;
(4)估计全校学生每周去图书馆的时间不少于6小时的人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,将一块含
角的三角板ABO的一边BO放在直线MN上,AB边在直线MN的上方,其中
,另一块含
角的三角板POQ的一边OQ在直线MN上,另一边OP在直线MN的下方.
现将图1中的三角板POQ绕点O按顺时针方向旋转,当直线MN恰好为
的平分线时,如图2所示,则
的度数______度;
继续将图2中的三角板绕点O按顺时针方向旋转至图3的位置,使得边OA落在
的内部,且AO恰好为
的平分线时,求
的度数;
在上述直角三角板从图1按顺时针方向旋转至图位置为止,这个过程中,若三角板POQ绕点O以每秒
的速度匀速旋转,当三角板POQ的OP边或OQ边所在直线平分
,则求此时三角板POQ绕点O旋转的时间t的值
请直接写出答案
. -
科目: 来源: 题型:
查看答案和解析>>【题目】四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为
的小正方形EFGH,已知AM为Rt△ABM较长直角边,AM=
EF,则正方形ABCD的面积为( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,甲乙两人在游泳池A处发现游泳池中的P处有人求救,甲立即跳入池中去救人,速度为1米/秒,乙以3.5米/秒的速度沿游泳池边跑到距A不远处的B处,捡起一个游泳圈再跳入池中去救人,甲游了20秒到达P处,两秒后乙到达P处.若∠PAB与∠PBC互余,且cos∠PBC=
,求乙的游泳速度. 
相关试题