【题目】如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是( ) ![]()
A.4
B.3 ![]()
C.2 ![]()
D.2+ ![]()
参考答案:
【答案】C
【解析】解:连接CC′,连接A′C交l于点D,连接AD,此时AD+CD的值最小,如图所示.![]()
∵△ABC与△A′BC′为正三角形,且△ABC与△A′BC′关于直线l对称,
∴四边形CBA′C′为边长为2的菱形,且∠BA′C′=60°,
∴A′C=2×
A′B=2
.
故选C.
【考点精析】根据题目的已知条件,利用等边三角形的性质和轴对称-最短路线问题的相关知识可以得到问题的答案,需要掌握等边三角形的三个角都相等并且每个角都是60°;已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(6,0),B(8,5),将线段OA平移至CB,点D在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.
(1)求对角线AC的长;
(2)设点D的坐标为(x,0),△ODC与△ABD的面积分别记为S1,S2.设S=S1﹣S2,写出S关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等?如果存在,用坐标形式写出点D的位置;如果不存在,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】数学课上,老师出示了如下的题目:如图(1),在等边△ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,试判断AE和BD的大小关系,并说明理由.
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图(2),确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”);
(2)特例启发,解答题目
如图(1),试判断AE和BD的大小关系,并说明理由;
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC;若△ABC的边长为1,AE=2,请画出图形,求CD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是 ( )
A. ∠A=∠C-∠B B. a2=b2-c2 C. a:b:c=2:3:4 D. a=
,b=
,c=1 -
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
+2sin60°+|3﹣
|﹣(
﹣π)0 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为40和28,则△EDF的面积为( )

A. 12 B. 6 C. 7 D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若AF=50,EC=7,则DE的长为( )

A. 14 B. 21 C. 24 D. 25
相关试题