【题目】二次函数
图象
轴上方的部分沿
轴翻折到
轴下方,图象的其余部分保持不变,翻折后的图象与原图象
轴下方的部分组成一个“
”形状的新图象,若直线
与该新图象有两个公共点,则
的取值范围为_____.
参考答案:
【答案】
或![]()
【解析】
画出图象求出直线经过点A和原点时的b的值,结合图象可以确定b的范围,再求出直线与翻折后的抛物线只有一个交点时的b的值,可以利用方程组只有一组解△=0解决问题,由此再确定b的取值范围.
如图,
![]()
当直线
经过点A(2,0)时,b=1,
当直线
经过点O(0,0)时,b=0,
∴0<b<1时,直线
与新图形有两个交点,
翻折后的抛物线为
由
方程组有一组解,消去y得到:2x2+3x2b=0,
∵△=0,
∴9+16b=0,
由图象可知,
时,直线
与新图形有两个交点.
综上所述0<b<1或
时,直线
与新图形有两个交点.
故答案为:
或
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知D是BC的中点,过点D作BC的垂线交∠BAC的平分线于点E,EF⊥AB于点F,EG⊥AC于点G.
(1)求证:BF=CG;
(2)若AB=10,AC=6,求线段CG的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数
的图象如图所示,现有下列结论:①
;②
;③
;④
.则其中结论正确的是( )
A. ①③ B. ③④ C. ②③ D. ①④
-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程:

. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
是关于
的二次函数.求:
满足条件的
的值;
为何值时,抛物线有最低点?求出这个最低点,这时当
为何值时,
随
的增大而增大?
为何值时,函数有最大值?最大值是多少?这时当
为何值时,
随
的增大而减小? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点
,以
为直径在第一象限内作半圆,
为半圆上一点,连接
并延长至
,使
,过
作
轴于点
,交线段
于点
,已知
,抛物线经过
、
、
三点.
________°.
求抛物线的函数表达式.
若
为抛物线上位于第一象限内的一个动点,以
、
、
、
为顶点的四边形面积记作
,则
取何值时,相应的点
有且只有
个? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有一个长为
米的篱笆,一面利用墙(墙的最大长度
为
米)围成的中间隔有一道篱笆的长方形花圃.设花圃的宽
为
米,面积为
平方米.
求
与
的函数关系式;
如果要围成花圃的面积为
平方米,求
的长为多少米?
如果要使围成花圃面积最大,求
的长为多少米?
相关试题