【题目】在下列各组条件中,不能说明
的是( )
A.AB=DE,∠B=∠E,∠C=∠FB.AB=DE,∠A=∠D,∠B=∠E
C.AC=DF,BC=EF,∠A=∠DD.AB=DE,BC=EF,AC=ED
参考答案:
【答案】C
【解析】
根据各个选项和全等三角形的判定可以解答本题.
AB=DE,∠B=∠E,∠C=∠F,根据AAS可以判定△ABC≌△DEF,故选项A不符合题意;
AB=DE,∠A=∠D,∠B=∠E,根据ASA可以可以判定△ABC≌△DEF,故选项B不符合题意;
AC=DF,BC=EF,∠A=∠D,根据SSA不可以判定△ABC≌△DEF,故选项C符合题意;
AB=DE,BC=EF,AC=ED,根据SSS可以可以判定△ABC≌△DEF,故选项D不符合题意;
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠A=90°,点D,E分别在AC,BC上,且CD·BC=AC·CE,以E为圆心,DE长为半径作圆,⊙E经过点B,与AB,BC分别交于点F,G.
(1)求证:AC是⊙E的切线;
(2)若AF=4,CG=5,
①求⊙E的半径;
②若Rt△ABC的内切圆圆心为I,则IE= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】(11分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PF⊥BC于点F. 点D、E的坐标分别为(0,6),(-4,0),连接PD,PE,DE.

(1)请直接写出抛物线的解析式;
(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值. 进而猜想:对于任意一点P,PD与PF的差为定值. 请你判断该猜想是否正确,并说明理由;
(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE的周长最小时“好点”的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们知道,有一个内角是直角的三角形是直角三角形,其中直角所在的两条边叫直角边,直角所对的边叫斜边(如图①所示).数学家还发现:在一个直角三角形中,两条直角边长的平方和等于斜边长的平方。即如果一个直角三角形的两条直角边长度分别是
和
,斜边长度是
,那么
。
(1)直接填空:如图①,若a=3,b=4,则c= ;若
,
,则直角三角形的面积是 ______ 。(2)观察图②,其中两个相同的直角三角形边AE、EB在一条直线上,请利用几何图形的之间的面积关系,试说明
。(3)如图③所示,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8,BC=10,利用上面的结论求EF的长?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,已知∠CAB=60°,D、E分别是边AB、AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB等于_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,已知∠A=60°,∠ABC的平分线BD与∠ACB的平分线CE相交于点O,∠BOC的平分线交BC于F,有下列结论:①∠BOE=60°,②∠ABD=∠ACE,③OE=OD,④BC=BE+CD。其中正确的是_________。(把所有正确结论的序号都选上)

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.
(1)请用树状图或列表法求恰好选中甲、乙两位同学的概率;
(2)请利用若干个除颜色外其余都相同的乒乓球,设计一个摸球的实验(至少摸两次),
并根据该实验写出一个发生概率与(1)所求概率相同的事件.
相关试题