【题目】甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.
(1)请用树状图或列表法求恰好选中甲、乙两位同学的概率;
(2)请利用若干个除颜色外其余都相同的乒乓球,设计一个摸球的实验(至少摸两次),
并根据该实验写出一个发生概率与(1)所求概率相同的事件.
参考答案:
【答案】(1)列表见解析,恰好选中甲、乙两位同学的概率为
;
(2)设计的方案见解析.
【解析】试题分析:(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率;(2)根据题意设计合理的方法即可.
试题解析:(1)从中选出两位同学打第一场比赛所有可能出现的结果有:
![]()
共有12种,它们出现的可能性相同.所有的结果中,满足“恰好选中甲、乙两位同学”(记为事件A)的结果有2种,所以P(A)=
=
.
(2)本题答案不唯一,下列解法供参考.
法一:在不透明的袋中,放入2个红色1个白色3个乒乓球,它们除颜色外都一样,摇匀.第一次摸出1个球,不放回;第二次摸出1个球记下颜色,放回;第3次摸出1个球.则三次摸出的球都是红色球的概率.
法二:在不透明的袋子中,放入四个除颜色外完全一样的乒乓球,它们的颜色分别为红、黄、蓝、黑,摇匀.第一次摸出一个球后,不放回;再从袋中摸出一个球.则两次摸出的球是一红一黄的概率.
法三:在不透明的袋子中,放入2个红色2个白色共4个乒乓球.它们除颜色外都一样,摇匀.连续摸2次不放回,则两次摸到的球都是红色球的概率.
法四:在不透明的袋子中,放入编号为1、2、3、4、5、6的6个乒乓球,它们除
编号外其它都一样,摇匀.第一次摸出1个球记下颜色后放回;第二次摸出1个球.则两次摸出颜色相同的球的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了贯彻落实国家关于增强青少年体质的计划,我市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商拟提供A(原味)、B(草莓味)、C(核桃味)、D(菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒形状、大小相同),为了解对学生奶口味的喜好情况,某初级中学九年级(1)班张老师对全班同学进行了调查统计,制成了如图所示的两幅不完整的统计图.
(1)该班共有多少人?
(2)求出喜好A和E学生奶口味的人数;
(3)该班五种口味的学生奶喜好人数组成一组统计数据,求出这组数据的平均数;
(4)将折线统计图补充完整.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,点E、F分别在边AB和边AC上,且∠EDF=90°,则下列结论一定成立的是_______

①△ADF≌△BDE
②S四边形AEDF=
S△ABC③BE+CF=AD
④EF=AD
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小莹用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,BC长为10cm.当小莹折叠时,顶点D落在BC边上的点F处(折痕为AE).则此时EC=( )cm

A.4B.
C.
D.3 -
科目: 来源: 题型:
查看答案和解析>>【题目】解下列不等式(组)
(1)3x+8≤5x-12
(2)2x<1-x≤x+5,并写出它的所有整数解.
(3)

(4)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容。

思考过程
因为 DE∥BC(已知)
所以∠3=∠EHC ( )
因为∠3=∠B(已知)
所以∠B=∠EHC ( )
所以 AB∥EH ( )
∠2+ ( )=180°( )
因为∠1=∠4( )
所以∠1+∠2=180°(等量代换)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,A、B 两点分别位于一个池塘的两端,小明想用绳子测量A、B 间的距离,但绳子不够长,请你利用三角形全等的相关知识帮他设计一种方案测量出A、B间的距离,写出具体的方案,并解释其中的道理,

相关试题