【题目】如图,在△ABC中,∠ABC和∠ACB的平分线BE、CF相交于点P.
(1)若∠ABC=70°,∠ACB=50°,则∠BPC= °;
(2)求证:∠BPC=180°﹣
(∠ABC+∠ACB);
(3)若∠A=α,求∠BPC的度数.
![]()
参考答案:
【答案】(1)120°;(2)证明见解析;(3)∠BPC=90°+
.
【解析】试题分析:(1)根据已知条件求出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形的内角和等于180°列式计算即可得解;(2)根据三角形的内角和和角平分线的定义即可得到结论;(3)根据三角形的内角和和角平分线的定义即可得到结论.
试题解析:(1)PBC+∠PCB=
(∠ABC+∠ACB)=
×120°=60°,
在△PBC中,∠BPC=180°(∠PBC+∠PCB)=180°60°=120°
故答案为:120;
(2)证明:∵∠ABC和∠ACB的平分线BE、CF相交于点P,
∴∠PBC=
∠ABC, ∠PCB=
∠ACB,
∵∠BPC +∠PBC+∠PCB=180°,
∴∠BPC=180°-(∠PBC+∠PCB)= 180°-(
∠ABC +
∠ACB) =180°-
(∠ABC+∠ACB),
∴∠BPC=180°-
(∠ABC+∠ACB);
(3)在△ABC中,∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=180°-∠A,
∵由(2)可知:∠BPC=180°-
(∠ABC+∠ACB),
∴∠BPC=180°-
(180°-∠A),
∵∠A=
,
∴∠BPC=180°-
(180°-
)=90°+
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】资料:小球沿直线撞击水平格档反弹时(不考虑垂直撞击),撞击路线与水平格档所成的锐角等于反弹路线与水平格档所成的锐角.以图(1)为例,如果黑球
沿从
到
方向在
点处撞击
边后将沿从
到
方向反弹,根据反弹原则可知
,即
.如图(2)和(3),
是一个长方形的弹子球台面,有黑白两球
和
,小球沿直线撞击各边反弹时遵循资料中的反弹原则.(回答以下问题时将黑白两球均看作几何图形中的点,不考虑其半径大小)


(1)探究(1):黑球
沿直线撞击台边
哪一点时,可以使黑球
经台边
反弹一次后撞击到白球
?请在图(2)中画出黑球
的路线图,标出撞击点,并简单证明所作路线是否符合反弹原则.(2)探究(2):黑球
沿直线撞击台边
哪一点时,可以使黑球
先撞击台边
反弹一次后,再撞击台边
反弹一次撞击到白球
?请在图(3)中画出黑球
的路线图,标出黑球撞击
边的撞击点,简单说明作法,不用证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC是一个三角形的纸片,点D,E分别是△ABC边AB,AC上的两点.
(1)如图①,如果沿直线DE折叠,则∠BDA′与∠A的关系是____________;
(2)如果折成图②的形状,猜想∠BDA′,∠CEA′和∠A的关系,并说明理由;
(3)如果折成图③的形状,猜想∠BDA′,∠CEA′和∠A的关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+
=0,过C作CB⊥x轴于B.
(1)求三角形ABC的面积;
(2)如图②,若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,求∠AED的度数;
(3)在y轴上是否存在点P,使得三角形ACP和三角形ABC的面积相等?若存在,求出P点的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在水平桌面上的两个“E”,当点P1,P2,O在一条直线上时,在点O处用①号“E”测得的视力与用②号“E”测得的视力相同.
(1)图中b1,b2,l1,l2满足怎样的关系式?
(2)若b1=3.2 cm,b2=2 cm,①号“E”的测量距离l1=8 cm,要使测得的视力相同,则②号“E”的测量距离l2应为多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,直线AB∥DC,点P为平面上一点,连接AP与CP.

(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,则∠APC= .
(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系为 .
(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O的内接四边形ABCD中,∠BCD=120°,AC平分∠BCD.
(1)求证:△ABD是等边三角形;
(2)若BD=6cm,求⊙O的半径.

相关试题