【题目】如图,把一个木制正方体的表面涂上颜色,然后将正方形分割成27个大小相同的小正方体,从这些小正方体中任意取出一个,求取出的小正方体;
![]()
(1)只有一面涂有颜色的概率;
(2)至少有两面涂有颜色的概率;
(3)各个面都没有颜色的概率.
参考答案:
【答案】(1)
;(2)
;(3)![]()
【解析】
(1)得出一面涂有颜色的小正方体有6个,再根据概率公式解答即可;
(2)得出至少有两面涂有颜色的小正方体有20个,再根据概率公式解答即可;
(3)得出各个面都没有涂颜色的小正方体共有1个,再根据概率公式解答即可.
解:(1)∵一面涂有颜色的小正方体有6个,
∴P (一面涂有颜色)=
;
(2)∵至少两面涂有颜色的小正方体有12+8个,
∴P (至少两面涂有颜色)=
;
(3)∵各个面都没有涂颜色的小正方体有1个,
∴P (各个面都没有涂颜色)=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,正方形
的边长为
是边
上一动点,连接
交
于点
,点
是线段
的垂直平分线与
的交点,连接
,并延长
交边
于点
.(1)如图1,若
求
的度数(用含
的式子表示);

(2)如图2,连接
当
点运动时,探究
的周长是否为定值?若是,求其值;若不是,说明理由;(3)若点
为
的中点,则
的面积为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.
(1)求证:△CDE≌△CBF;
(2)当DE=
时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,点
,
在反比例函数
(m为常数)的图象上,连接AO并延长与图象的另一支有另一个交点为点C,过点A的直线l与x轴的交点为点
,过点C作CE∥x轴交直线l于点E.(1)求m的值,并求直线l对应的函数解析式;
(2)求点E的坐标;
(3)过点B作射线BN∥x轴,与AE交于点M (补全图形),求证:


-
科目: 来源: 题型:
查看答案和解析>>【题目】在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:

(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:
① ;② ;③ ;④ .
(2)如果点C的坐标为(1,3) ,求不等式
的解集. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿着CB方向匀速移动,速度为1cm/s;当△PNM停止平移时,点Q也停止移动,如图②.设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.解答下列问题:

(1)当t为何值时,PQ∥AB?
(2)当t=3时,求△QMC的面积;
(3)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.
相关试题