【题目】如图,已知⊙O的弦AB等于半径,连接OB并延长使BC=OB.
(1)∠ABC= .
(2)AC与⊙O有什么关系?请证明你的结论;
(3)在⊙O上,是否存在点D,使得AD=AC?若存在,请画出图形,并给出证明;若不存在,请说明理由.
![]()
参考答案:
【答案】(1)120°;(2)AC是⊙O的切线,证明见解析;(3)存在.证明见解析.
【解析】解:(1)120°;……………………………………………………………1分
(2)AC是⊙O的切线.……………………………………………………3分
证法一
∵AB=OB=OA,∴△OAB为等边三角形,…………………………4分
∴∠OBA=∠AOB=60°.……………………………………………5分
∵BC=BO,∴BC=BA,
∴∠C=∠CAB,……………………………………………………………6分
又∵∠OBA=∠C+∠CAB=2∠C,
即2∠C=60°,∴∠C=30°,………………………………………7分
在△OAC中,∵∠O+∠C=60°+30°=90°,
∴∠OAC=90°,…………………………………………………………8分
∴AC是⊙O的切线;
证法二:
∵BC=OB,∴点B为边OC的中点,……………………………………4分
即AB为△OAC的中位线,…………………………………………………5分
∵AB=OB=BC,即AB是边OC的一半,……………………………6分
∴△OAC是以OC为斜边的直角三角形,…………………………………7分
∴∠OAC=90°,…………………………………………………………8分
∴AC是⊙O的切线;
(3)存在.……………………………………………………………………9分
方法一:
如图2,延长BO交⊙O于点D,即为所求的点.…………………………10分
证明如下:
连结AD,∵BD为直径,∴∠DAB=90°.…………………………11分
在△CAO和△DAB中,
∵
,∴△CAO≌△DAB(ASA),………………12分
∴AC=AD.…………………………………………………………………13分
(也可由OC=BD,根据AAS证明;或HL证得,或证△ABC≌△AOD)
方法二:
如图3,画∠AOD=120°,……………………………………………10分
OD交⊙O于点D,即为所求的点.…………………………………………11分
∵∠OBA=60°,
∴∠ABC=180°-60°=120°.
在△AOD和△ABC中,
∵
,∴△AOD≌△ABC(SAS),………………12分
![]()
![]()
∴AD=AC.…………………………………………………………………13分
(1)由已知可知△AOB为等边三角形,利用平角求出∠ABC的度数
(2)利用直角三角形的性质求出∠OAC=90°,从而得出结论
(3)延长BO交⊙O于点D,即为所求的点,利用全等三角形求证
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).
根据图象提供的信息,解答下列问题:

(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元;
(3)求第8个月公司所获利润为多少万元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某班40名学生的某次数学成绩如下表:
成绩(分)
50
60
70
80
90
100
人数(人)
2
m
10
n
4
2
(1)若这班的数学成绩为69分,求m和n的值.
(2)若该班40名学生成绩的众数为X,中位数为Y.则(X-Y)2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=x2+kx+2k﹣4
(1)当k=2时,求出此抛物线的顶点坐标;
(2)求证:无论k为任何实数,抛物线都与x轴有交点,且经过x轴一定点;
(3)已知抛物线与x轴交于A(x1,0)、B(x2,0)两点(A在B的左边),|x1|<|x2|,与y轴交于C点,且S△ABC=15.问:过A,B,C三点的圆与该抛物线是否有第四个交点?试说明理由.如果有,求出其坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】点A在点B的北偏东60°方向,则点B在点A的_____方向.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是_____.
①一个数的绝对值不可能是负数;
②单项式2x2y的次数是2;
③连接两点间的线段就叫做两点的距离;
④一个锐角的补角比它的余角大90°
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.

相关试题