【题目】如图,根据图形填空:
已知:∠DAF=∠F,∠B=∠D,AB与DC平行吗?
解:∠DAF=∠F ( )
∴AD∥BF( ),
∴∠D=∠DCF( )
∵∠B=∠D ( )
∴∠B=∠DCF ( )
∴AB∥DC( )
![]()
参考答案:
【答案】见解析.
【解析】
首先根据已知,应用内错角相等,两直线平行,证得AD∥BF;利用两直线平行,内错角相等,证得∠D=∠DCF,又由已知,利用等量代换,证得∠B=∠DCF,根据同位角相等,两直线平行,证得AB∥DC.
解:∠DAF=∠F ( 已知),
∴AD∥BF( 内错角相等,两直线平行),
∴∠D=∠DCF( 两直线平行,内错角相等),
∵∠B=∠D ( 已知),
∴∠B=∠DCF ( 等量代换),
∴AB∥DC( 同位角相等,两直线平行).
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,二次函数y=mx2﹣(2m+1)x+m﹣5的图象与x轴有两个公共点.
(1)求m的取值范围;
(2)若m取满足条件的最小的整数, ①写出这个二次函数的解析式;
②当n≤x≤1时,函数值y的取值范围是﹣6≤y≤4﹣n,求n的值;
③将此二次函数平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x﹣h)2+k,当x<2时,y随x的增大而减小,求k的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,G 为 BC 的中点,且 DG⊥BC,DE⊥AB 于 E,DF⊥AC 于 F, BE=CF.
(1)求证:AD 是∠BAC 的平分线;
(2)如果 AB=8,AC=6,求 AE 的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,如果AB∥CD,∠B=37°,∠D=37°,那么BC与DE平行吗?完成下面解答过中的填空或填写理由.
解:∵AB∥CD ( 已知),
∴∠B= ( )
∵∠B=∠D=37°(已知)
∴ =∠D (等量代换)
∴BC∥DE ( ).

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=BC,BD⊥AC于点D.

(1)如图1,当∠ABC=90°时,若CE平分∠ACB,交AB于点E,交BD于点F. ①求证:△BEF是等腰三角形;
②求证:BD=
(BC+BF);
(2)点E在AB边上,连接CE.若BD=
(BC+BE),在图2中补全图形,判断∠ACE与∠ABC之间的数量关系,写出你的结论,并写出求解∠ACE与∠ABC关系的思路. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,若点P和点P1关于y轴对称,点P1和点P2关于直线l对称,则称点P2是点P关于y轴,直线l的二次对称点.
(1)如图1,点A(﹣1,0).
①若点B是点A关于y轴,直线l1:x=2的二次对称点,则点B的坐标为;
②若点C(﹣5,0)是点A关于y轴,直线l2:x=a的二次对称点,则a的值为;
③若点D(2,1)是点A关于y轴,直线l3的二次对称点,则直线l3的表达式为;
(2)如图2,⊙O的半径为1.若⊙O上存在点M,使得点M'是点M关于y轴,直线l4:x=b的二次对称点,且点M'在射线y=
x(x≥0)上,b的取值范围是; 
(3)E(t,0)是x轴上的动点,⊙E的半径为2,若⊙E上存在点N,使得点N'是点N关于y轴,直线l5:y=
x+1的二次对称点,且点N'在y轴上,求t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在 Rt△ABC 中,∠C=90°,∠A=60°,AB=10cm,若点M 从点 B 出发以 2cm/s 的速度向点 A 运动,点 N 从点 A 出发以 1cm/s 的速度向点 C 运动,设 M、N 分别从点 B、A 同时出发,运动的时间为 ts.
(1)用含 t 的式子表示线段 AM、AN 的长;
(2)当 t 为何值时,△AMN 是以 MN 为底边的等腰三角形?
(3)当 t 为何值时,MN∥BC?并求出此时 CN 的长.

相关试题