【题目】已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.

(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;

(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;

(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.

【答案】(1)DM⊥EM,DM=EM,理由见解析; (2)DM⊥EM,DM=EM,理由见解析;(3)满足条件的MF的值为

【解析】1)结论:DMEM,DM=EM.只要证明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因为∠EDH=90°,可得DMEM,DM=ME;

(2)结论不变,证明方法同(1)类似;

(3)分两种情形画出图形,利用勾股定理以及等腰直角三角形的性质解决问题即可.

(1)结论:DMEM,DM=EM,

理由:如图1中,延长EMADH,

∵四边形ABCD是正方形,四边形EFGC是正方形,

∴∠ADE=DEF=90°,AD=CD,

ADEF,

∴∠MAH=MFE,

AM=MF,AMH=FME,

∴△AMH≌△FME,

MH=ME,AH=EF=EC,

DH=DE,

∵∠EDH=90°,

DMEM,DM=ME;

(2)如图2中,结论不变.DMEM,DM=EM,

理由:如图2中,延长EMDA的延长线于H,

∵四边形ABCD是正方形,四边形EFGC是正方形,

∴∠ADE=DEF=90°,AD=CD,

ADEF,

∴∠MAH=MFE,

AM=MF,AMH=FME,

∴△AMH≌△FME,

MH=ME,AH=EF=EC,

DH=DE,

∵∠EDH=90°,

DMEM,DM=ME;

(3)如图3中,作MRDER,

RtCDE中,DE==12,

DM=NE,DMME,

MR=DE,MR=DE=6,DR=RE=6,

RtFMR中,FM=

如图4中,作MRDER,

RtMRF中,FM=

故满足条件的MF的值为

关闭