【题目】如图,已知⊙O的半径为4,OA为半径,CD为弦,OA与CD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.
(1)求CD的长;
(2)求证:PC是⊙O的切线.
![]()
参考答案:
【答案】(1)4
(2) PC与☉O相切
【解析】(1)连接OC,根据翻折的性质求出OM,CD⊥OA,再利用勾股定理列式求解即可;
(2)利用勾股定理列式求出PC,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可,
(1)连接OC,
∵弧CD沿CD翻折后,A与O重合,
∴OM=
OA=2,CD⊥OA
∵OC=4,
∴CD=2CM=2
=4
;
(2)∵PA=OA=4,AM=OM=2,CM=2
,PM=PA+AM=6,
又∵
CMP=∠OMC=90°
∴PC=
=4![]()
∵OC=4,PO=8,
∴PC
+OC
=PO![]()
∴∠PCO=90°
∴PC与☉O相切
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O是△ABC的内切圆,切点为D,E,F,若AD、BE的长为方程
的两个根,则△ABC的周长为 ______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l与x轴,y轴分别交于M,N两点,且OM=ON=3.

(1)求这条直线的函数表达式;
(2)Rt△ABC与直线l在同一个平面直角坐标系内,其中∠ABC=90°,AC=2
,A(1,0),B(3,0),将△ABC沿着x轴向左平移,当点C落在直线l上时,求线段AC扫过的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,由12个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点,已知这个大矩形网格的宽为4,△ABC的顶点都在格点.

(1)求每个小矩形的长与宽;
(2)在矩形网格中找出所有的格点E,使△ABE为直角三角形;(描出相应的点,并分别用E1 , E2…表示)
(3)求sin∠ACB的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】综合题。
(1)如图①,四边形ABCD是正方形,点G是BC上的任意一点,BF⊥AG于点F,DE⊥AG于点E,探究BF,DE,EF之间的数量关系,第一学习小组合作探究后,得到DE﹣BF=EF,请证明这个结论;
(2)若(1)中的点G在CB的延长线上,其余条件不变,请在图②中画出图形,并直接写出此时BF,DE,EF之间的数量关系;
(3)如图③,四边形ABCD内接于⊙O,AB=AD,E,F是AC上的两点,且满足∠AED=∠BFA=∠BCD,试判断AC,DE,BF之间的数量关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:“?”处的数字是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,反比例函数
与一次函数
的图象交于点A(-2,6)、点B(
,1).(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.
(3)将一次函数
的图象沿
轴向下平移n个单位,使平移后的图象与反比例函数
的图象有且只有一个交点,求n的值.
相关试题