【题目】如图,直线l与x轴,y轴分别交于M,N两点,且OM=ON=3.![]()
(1)求这条直线的函数表达式;
(2)Rt△ABC与直线l在同一个平面直角坐标系内,其中∠ABC=90°,AC=2
,A(1,0),B(3,0),将△ABC沿着x轴向左平移,当点C落在直线l上时,求线段AC扫过的面积.
参考答案:
【答案】
(1)
解:设该直线的函数表达式为y=kx+b(k≠0),
∵OM=ON=3,且M、N分别在x轴负半轴、y轴负半轴上,
∴M(﹣3,0),N(0,﹣3).
将M(﹣3,0)、N(0,﹣3)代入y=kx+b,
,解得:
,
∴这条直线的函数表达式为y=﹣x﹣3
(2)
解:∵A(1,0),B(3,0),
∴AB=2.
∵∠ABC=90°,AC=2
,
∴BC=4,
∴C(3,4).
设平移后点A、C的对应点分别为A′、C′,
当y=﹣x﹣3=4时,x=﹣7,
∴C′(﹣7,4),
∴CC′=10.
∵线段AC扫过的四边形ACC′A′为平行四边形,
∴S=CC′BC=10×4=40.
答:线段AC扫过的面积为40.
![]()
【解析】(1)根据OM=ON=3结合图形可得出点M、N的坐标,由点M、N的坐标利用待定系数法即可求出直线MN的函数表达式;(2)通过解直角三角形可得出点C的坐标,设平移后点A、C的对应点分别为A′、C′,利用一次函数图象上点的坐标特征可找出点C′的坐标,根据平移的性质结合平行四边形的面积公式即可求出线段AC扫过的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有一个形如四边形的点阵,第1层每边有2个点,第2层每边有3个点,第3层每边有4个点,依此类推.
(1)第10层共有 个点,第n层共有 个点;
(2)如果某一层共有96个点,它是第几层?
(3)有没有一层点数为150个点,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ABC=45°,AD⊥BC于点D,点E在AD上,且DE=DC.

(1)求证:△BDE≌△ADC;
(2)若BC=8.4,tanC=
,求DE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O是△ABC的内切圆,切点为D,E,F,若AD、BE的长为方程
的两个根,则△ABC的周长为 ______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,由12个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点,已知这个大矩形网格的宽为4,△ABC的顶点都在格点.

(1)求每个小矩形的长与宽;
(2)在矩形网格中找出所有的格点E,使△ABE为直角三角形;(描出相应的点,并分别用E1 , E2…表示)
(3)求sin∠ACB的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知⊙O的半径为4,OA为半径,CD为弦,OA与CD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.
(1)求CD的长;
(2)求证:PC是⊙O的切线.

-
科目: 来源: 题型:
查看答案和解析>>【题目】综合题。
(1)如图①,四边形ABCD是正方形,点G是BC上的任意一点,BF⊥AG于点F,DE⊥AG于点E,探究BF,DE,EF之间的数量关系,第一学习小组合作探究后,得到DE﹣BF=EF,请证明这个结论;
(2)若(1)中的点G在CB的延长线上,其余条件不变,请在图②中画出图形,并直接写出此时BF,DE,EF之间的数量关系;
(3)如图③,四边形ABCD内接于⊙O,AB=AD,E,F是AC上的两点,且满足∠AED=∠BFA=∠BCD,试判断AC,DE,BF之间的数量关系,并说明理由.
相关试题