【题目】一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:“?”处的数字是_____.
![]()
参考答案:
【答案】1
【解析】
根据正方体的特征,已知1和2,3,4,5相邻,3和1,2,5,6相邻;
根据以上分析可得1 和6相对, 3和4相对, 从而可知2和5相对, 再结合左面两个图, 即可得出“?” 处的数字.
解:根据正方体的特征知, 相邻的面一定不是对面,因为1和2,3,4,5相邻,
所以只能和6相对.因为3和1, 2, 5, 6相邻, 只能和4相对,又因为3和4已经相对了,
所以只能是2和5相对, 即面 “1” 与面 “6” 相对, 面 “2” 与面“5” 相
对, “3” 与面 “4” 相对, 即1对6, 2对5,3对4.因此第三个正方体下面是2, 左面是
4, “?” 处只能是1和6,结合左面两个图看,应为1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,由12个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点,已知这个大矩形网格的宽为4,△ABC的顶点都在格点.

(1)求每个小矩形的长与宽;
(2)在矩形网格中找出所有的格点E,使△ABE为直角三角形;(描出相应的点,并分别用E1 , E2…表示)
(3)求sin∠ACB的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知⊙O的半径为4,OA为半径,CD为弦,OA与CD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.
(1)求CD的长;
(2)求证:PC是⊙O的切线.

-
科目: 来源: 题型:
查看答案和解析>>【题目】综合题。
(1)如图①,四边形ABCD是正方形,点G是BC上的任意一点,BF⊥AG于点F,DE⊥AG于点E,探究BF,DE,EF之间的数量关系,第一学习小组合作探究后,得到DE﹣BF=EF,请证明这个结论;
(2)若(1)中的点G在CB的延长线上,其余条件不变,请在图②中画出图形,并直接写出此时BF,DE,EF之间的数量关系;
(3)如图③,四边形ABCD内接于⊙O,AB=AD,E,F是AC上的两点,且满足∠AED=∠BFA=∠BCD,试判断AC,DE,BF之间的数量关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,反比例函数
与一次函数
的图象交于点A(-2,6)、点B(
,1).(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.
(3)将一次函数
的图象沿
轴向下平移n个单位,使平移后的图象与反比例函数
的图象有且只有一个交点,求n的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线
分别交x轴、y轴于A、B两点,点P是线段AB上的一动点,以P为圆心,r为半径画圆.(1)若点P的横坐标为﹣3,当⊙P与x轴相切时,则半径r为 ,此时⊙P与y轴的位置关系是 .(直接写结果)
(2)若
,当⊙P与坐标轴有且只有3个公共点时,求点P的坐标.(3)如图2,当圆心P与A重合,
时,设点C为⊙P上的一个动点,连接OC,将线段OC绕点O顺时针旋转90°,得到线段OD,连接AD,求AD长的最值并直接写出对应的点D的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于________.

相关试题