【题目】已知有理数a、b、c在数轴上对应的点如图所示,则下列结论正确的是( )
![]()
A. c+b>a+b B. cb<ab C. ﹣c+a>﹣b+a D. ac>ab
参考答案:
【答案】C
【解析】
结合数轴中a,b,c的位置,判断其正负性和绝对值的大小,以此判断各选项的对错.
由数轴上各点的位置判断:c<b<0<a,|b|<|a|<|c|,
A.c+b<0,a+b>0,所以c+b<a+b,故该选项错误;
B.c,b同号,所以cb>0,同理,ab<0,所以cb>ab,故该选项错误;
C.﹣c>0,﹣b>0,a>0,因为|c|>|b|,所以﹣c>﹣b,不等式两边同时加a,不等号方向不变,故该选项正确;
D.c<b,所以不等式两边同时乘以正数a,不等号的方向不变,故该选项错误.
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】顺次连接对角线相等的四边形的四边中点,所得的四边形一定是____________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为做好食堂的服务工作,某学校食堂对学生最喜爱的菜肴进行了抽样调查,下面试根据收集的数据绘制的统计图(不完整):
(1)参加抽样调查的学生数是______人,扇形统计图中“大排”部分的圆心角是______°;
(2)把条形统计图补充完整;
(3)若全校有3000名学生,请你根据以上数据估计最喜爱“烤肠”的学生人数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC中,点O是边AC上的一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:OE=OF.
(2)试确定点O在边AC上的位置,使四边形AECF是矩形,并加以证明.
(3)在(2)的条件下,且△ABC满足 ____________时,矩形AECF是正方形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)在下列表格中填上相应的值
x
…
-6
-4
-3
-2
-1
1
2
3
4
6
…

…
-1
-2
3
1
…


(2)若将上表中的变量
用y来代替(即有
),请以表中的
的值为点的坐标, 在下方的平面直角坐标系描出相应的点,并用平滑曲线顺次连接各点(3)在(2)的条件下,可将y看作是x的函数 ,请你结合你所画的图像,写出该函数图像的两个性质 :__________________________________________________.
(4)结合图像,借助之前所学的函数知识,直接写出不等式
的解集: ____________ -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)方法回顾:在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:
第一步添加辅助线:如图1,在
中,延长
(
分别是
的中点)到点
,使得
,连接
;第二步证明
,再证四边形
是平行四边形,从而得出三角形中位线的性质结论:____________________________________(请用DE与BC表示)
(2)问题解决:如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.

(3)拓展研究:如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=
,DF=2,∠GEF=90°,求GF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程
,操作步骤是:
第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;
第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)
第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。

(1)在图2 中,按照“第四步“的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹)
(2)结合图1,请证明“第三步”操作得到的m就是方程
的一个实数根;
(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程
的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当
,
,
,
与a,b,c之间满足怎样的关系时,点P(
,
),Q(
,
)就是符合要求的一对固定点?
相关试题