【题目】顺次连接对角线相等的四边形的四边中点,所得的四边形一定是____________.
参考答案:
【答案】菱形
【解析】分析:作出图形,根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=
AC,GH=
AC,HE=
BD,FG=
BD,再根据四边形的对角线相等可可知AC=BD,从而得到EF=FG=GH=HE,再根据四条边都相等的四边形是菱形即可得解.
详解:如图,E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点,根据三角形的中位线定理,EF=
AC,GH=
AC,HE=
BD,FG=
BD,连接AC、BD.
∵四边形ABCD的对角线相等,∴AC=BD,所以,EF=FG=GH=HE,所以,四边形EFGH是菱形.
故答案为:菱形.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过抛物线y=
x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.
(1)求抛物线的对称轴和点B的坐标;
(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;
①连结BD,求BD的最小值;
②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式. -
科目: 来源: 题型:
查看答案和解析>>【题目】湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了
淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养
天的总成本为
万元;放养
天的总成本为
万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是
万元,收购成本为
万元,求
和
的值;
(2)设这批淡水鱼放养
天后的质量为
(
),销售单价为
元/
.根据以往经验可知:
与
的函数关系为
;
与
的函数关系如图所示.
①分别求出当
和
时,
与
的函数关系式;
②设将这批淡水鱼放养
天后一次性出售所得利润为
元,求当
为何值时,
最大?并求出最大值.(利润=销售总额-总成本) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
与x轴的负半轴交于点A,与y轴交于点B,连结AB.点C
在抛物线上,直线AC与y轴交于点D.
(1)求c的值及直线AC的函数表达式;
(2)点P在x轴的正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.
①求证:△APM∽△AON;
②设点M的横坐标为m , 求AN的长(用含m的代数式表示). -
科目: 来源: 题型:
查看答案和解析>>【题目】为做好食堂的服务工作,某学校食堂对学生最喜爱的菜肴进行了抽样调查,下面试根据收集的数据绘制的统计图(不完整):
(1)参加抽样调查的学生数是______人,扇形统计图中“大排”部分的圆心角是______°;
(2)把条形统计图补充完整;
(3)若全校有3000名学生,请你根据以上数据估计最喜爱“烤肠”的学生人数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC中,点O是边AC上的一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:OE=OF.
(2)试确定点O在边AC上的位置,使四边形AECF是矩形,并加以证明.
(3)在(2)的条件下,且△ABC满足 ____________时,矩形AECF是正方形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知有理数a、b、c在数轴上对应的点如图所示,则下列结论正确的是( )

A. c+b>a+b B. cb<ab C. ﹣c+a>﹣b+a D. ac>ab
相关试题