【题目】阅读理解:

如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.

应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为(  )

A(60°,4) B(45°,4) C(60°,2 D(50°,2


参考答案:

【答案】A.

【解析】

试题如图,设正六边形的中心为D,连接AD,

∵∠ADO=360°÷6=60°,OD=AD,

∴△AOD是等边三角形,

OD=OA=2,AOD=60°

OC=2OD=2×2=4,

正六边形的顶点C的极坐标应记为(60°,4).

故选A.

关闭