【题目】某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为整数).
(1)直接写出每天游客居住的房间数量y与x的函数关系式.
(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?
(3)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?
参考答案:
【答案】
(1)解:根据题意,得:y=50﹣x,(0≤x≤50,且x为整数);
(2)解:W=(120+10x﹣20)(50﹣x)
=﹣10x2+400x+5000
=﹣10(x﹣20)2+9000,
∵a=﹣10<0
∴当x=20时,W取得最大值,W最大值=9000元,
答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元;
(3)解:由
解得20≤x≤40
当x=40时,这天宾馆入住的游客人数最少,
最少人数为2y=2(﹣x+50)=20(人).
【解析】本题考查二次函数的应用、一元一次不等式等知识,解题的关键是构建二次函数解决实际问题中的最值问题,属于中考常考题型.(1)根据每天游客居住的房间数量等于50﹣减少的房间数即可解决问题.(2)构建二次函数,利用二次函数的性质解决问题.(3)根据条件列出不等式组即可解决问题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于x的方程(k﹣1)x2+2kx+2=0.
(1)求证:无论k为何值,方程总有实数根.
(2)设x1 , x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=
+x1+x2 , S的值能为2吗?若能,求出此时k的值;若不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度,一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域.如图所示,AB=60(
+
)海里,在B处测得C在北偏东45°的方向上,A处测得C在北偏西30°的方向上,在海岸线AB上有一灯塔D,测得AD=120(
-
)海里.
(参考数据:
=1.41,
=1.73,
=2.45)
(1)分别求出A与C及B与C的距离AC、BC(结果保留根号)
(2)已知在灯塔D周围100海里范围内有暗礁群,我在A处海监船沿AC前往C处盘查,图中有无触礁的危险? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB是⊙O的切线.
(2)已知AO角⊙O于点E,延长AO交⊙O于点D,tanD=
,求
的值.
(3)在(2)的条件下,设⊙O的半径为3,求AB的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,直线y=2x+4与y轴交于A点,与x轴交于B点,抛物线C1:y=﹣
x2+bx+c过A、B两点,与x轴另一交点为C. 
(1)求抛物线解析式及C点坐标.
(2)向右平移抛物线C1 , 使平移后的抛物线C2恰好经过△ABC的外心,抛物线C1、C2相交于点D,求四边形AOCD的面积.
(3)已知抛物线C2的顶点为M,设P为抛物线C1对称轴上一点,Q为抛物线C1上一点,是否存在以点M、Q、P、B为顶点的四边形为平行四边形?若存在,直接写出P点坐标;不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知不等式组
,其解集在数轴上表示正确的是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点A(﹣3,6),B(﹣9,﹣3),以原点O为位似中心,相似比为
,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(﹣1,2)
B.(﹣9,18)
C.(﹣9,18)或(9,﹣18)
D.(﹣1,2)或(1,﹣2)
相关试题