【题目】如图,AB是⊙O的直径,C是
的中点,CE⊥AB于E,BD交CE于点F. ![]()
(1)求证:CF=BF;
(2)若CD=6,AC=8,求⊙O的半径.
参考答案:
【答案】
(1)证明:延长CE交⊙O于点P,
∵CE⊥AB,
∴
=
,
∴∠BCP=∠BDC,
∵C是
的中点,
∴CD=CB,
∴∠BDC=∠CBD,
∴∠CBD=∠BCP,
∴CF=BF
(2)解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵CD=6,AC=8,
∴BC=6,
在Rt△ABC中,AB=
=10,
∴⊙O的半径为5.
![]()
【解析】(1)首先延长CE交⊙O于点P,由垂径定理可证得∠BCP=∠BDC,又由C是
的中点,易证得∠BDC=∠CBD,继而可证得CF=BF;(2)由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠ACB=90°,然后由勾股定理求得AB的长,继而求得答案.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对圆心角、弧、弦的关系的理解,了解在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是( )

A. AC=AC B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=
x2﹣2x﹣1
(1)用配方法把抛物线化成顶点式,指出开口方向顶点坐标和对称轴
(2)用描点法画出图象.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用长为28米长的篱笆围成一个矩形花园ABCD(篱笆只围AB、BC两边),设AB=x米,花园面积S.

(1)写出S 关于x的函数解析式,当S=192平方米,求x的值;
(2)若在P处有一棵树与墙CD、AD的距离分别是15米和6米,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如图1,当DE∥BC时,有DBEC.(填“>”,“<”或“=”)
(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1抛物线y=ax2+bx+c过 A(﹣1,0)、B(4,0)、C(0,2)三点.

(1)求抛物线解析式;
(2)点C,D关于抛物线对称轴对称,求△BCD的面积;
(3)如图2,过点E(1,﹣1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°得△MNQ(点M、N、Q分别与A、E、F对应)使得M、N在抛物线上,求M、N的坐标.
相关试题